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ABSTRACT 

Researcher: Edwin Vincent Odisho II 

Title: PREDICTING PILOT MISPERCEPTION OF RUNWAY 
EXCURSION RISK THROUGH MACHINE LEARNING 

ALGORITHMS OF RECORDED FLIGHT DATA 

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2020 

The research used predictive models to determine pilot misperception of runway 

excursion risk associated with unstable approaches.  The Federal Aviation Administration 

defined runway excursion as a veer-off or overrun of the runway surface.  The Federal 

Aviation Administration also defined a stable approach as an aircraft meeting the 

following criteria: (a) on target approach airspeed, (b) correct attitude, (c) landing 

configuration, (d) nominal descent angle/rate, and (e) on a straight flight path to the 

runway touchdown zone.  Continuing an unstable approach to landing was defined as 

Unstable Approach Risk Misperception in this research.  A review of the literature 

revealed that an unstable approach followed by the failure to execute a rejected landing 

was a common contributing factor in runway excursions.  

Flight Data Recorder data were archived and made available by the National 

Aeronautics and Space Administration for public use.  These data were collected over a 

four-year period from the flight data recorders of a fleet of 35 regional jets operating in 

the National Airspace System.  The archived data were processed and explored for 

evidence of unstable approaches and to determine whether or not a rejected landing was 
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executed.  Once identified, those data revealing evidence of unstable approaches were 

processed for the purposes of building predictive models.  

SAS™ Enterprise Miner® was used to explore the data, as well as to build and 

assess predictive models.  The advanced machine learning algorithms utilized included: 

(a) support vector machine, (b) random forest, (c) gradient boosting, (d) decision tree, (e) 

logistic regression, and (f) neural network.  The models were evaluated and compared to 

determine the best prediction model.  Based on the model comparison, the decision tree 

model was determined to have the highest predictive value.   

The Flight Data Recorder data were then analyzed to determine predictive 

accuracy of the target variable and to determine important predictors of the target 

variable, Unstable Approach Risk Misperception.  Results of the study indicated that the 

predictive accuracy of the best performing model, decision tree, was 99%.  Findings 

indicated that six variables stood out in the prediction of Unstable Approach Risk 

Misperception: (1) glideslope deviation, (2) selected approach speed deviation (3) 

localizer deviation, (4) flaps not extended, (5) drift angle, and (6) approach speed 

deviation.  These variables were listed in order of importance based on results of the 

decision tree predictive model analysis. 

The results of the study are of interest to aviation researchers as well as airline 

pilot training managers.  It is suggested that the ability to predict the probability of pilot 

misperception of runway excursion risk could influence the development of new pilot 

simulator training scenarios and strategies.  The research aids avionics providers in the 

development of predictive runway excursion alerting display technologies.   
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CHAPTER I 

INTRODUCTION  

The Federal Aviation Administration (FAA), the National Transportation Safety 

Board (NTSB), the Flight Safety Foundation (FSF), and the International Air Transport 

Association (IATA) have identified the continuation of an unstable approach to a landing 

as a hazard that has contributed to runway excursion (RE) accidents and incidents.  The 

FAA (2003) defined a RE as a landing attempt that results in an overrun or veer off the 

runway surface.  The IATA Accident database indicated that 61% of all aviation 

accidents from 2012-2016 occurred during the approach and landing phases of flight.  

IATA also claimed that 16% of those accidents contained unstable approach contributory 

factors (IATA, 2017).  Consequently, the NTSB has issued numerous safety 

recommendations to enhance runway safety, which have been consistently included in 

recent NTSB Most Wanted List of Transportation Safety Improvements (NTSB, 2019a).  

A review of recent NTSB accident investigation reports produced evidence that aircraft 

operators have not fully developed effective risk mitigation strategies concerning REs 

(FAA, 2014, 2015; NTSB, 2000, 2001, 2014a, 2014b, 2016, 2019b).   

Boeing Commercial Airplanes (BCA) (2017) has compiled data on commercial 

aircraft accidents worldwide since 1959.  Boeing reported that the highest percentage of 

fatal accidents over the last 10 years occurred during the approach and landing phases of 

flight as shown in Figure 1.  Boeing also emphasized the contrast of relatively low flight 

time in the approach and landing phases of flight and the higher percentage of fatal 

accidents relative to other phases of flight (BCA, 2017). 
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Figure 1. Fatal accidents and onboard fatalities by phase of flight from 2007–2016. 
Percentages may not sum to 100% due to numerical rounding.  Reprinted from 
“Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations: 
1959-2016,” Aviation Safety, 2017. Copyright 2017 by Boeing Commercial Airplanes, p. 
20.  Adapted with permission.  Source: www.skybrary.aero  

 

To facilitate safety risk mitigation strategies for commercial airline operators, the 

FAA commissioned a working group, the Commercial Aviation Safety Team (CAST), in 

2002.  One of the key recommendations from the CAST was the drafting of Advisory 

Circular (AC) 120-71A, Standard Operating Procedures for Flight Deck Crewmembers 

(subsequently replaced with AC 120-71B).  This Advisory Circular introduced stabilized 

approach criteria, based on aircraft glide path, energy state, and configuration for landing 

(FAA, 2003).  The FAA subsequently removed the stabilized approach criteria from AC 

120-71A when it was updated to AC-120-71B.  Although the specific criteria for the 

stabilized approach concept was not listed subsequent documentation, the FAA provided 

guidance on stable approaches in AC-91-79A, Mitigating the Risks of a Runway Overrun 

Upon Landing.  In this AC, the FAA presented a case study on an unstable approach 

scenario as well as listing unstabilized approaches as the primary contributory factor in 

runway excursions (FAA, 2009, p. 3).  Although FAA stable approach criteria have not 

been updated or modified in subsequent advisory circulars, both AC-120-71A and AC-
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91-79A have been referred to in FAA documentation regarding unstable approaches.  For 

example, the FAA advised readers to “refer to AC-120-71” in its description of stabilized 

approaches in AC-120-108, Continuous Descent Final Approach, (FAA, 2011, p. 2) and 

also made a similar suggestion in FAA Safety Briefing 18-09, FAA Stabilized Approach 

and Go-Around Concept, but referred readers instead to AC-91-79A (FAA, 2018, p. 2).  

References to specific FAA stable approach criteria were made to those listed in AC-120-

71A (FAA, 2003) in this research. 

The FAA also discussed unstable approaches in recommendations made to pilots 

concerning energy state management techniques in Advisory Circular 120-111, Upset 

Recovery and Prevention Training.  In this AC, the FAA asserted that proper energy state 

management was a critical component in flight path management associated with stable 

approaches.  (FAA, 2017a).  Figure 2 shows an overview of a stabilized approach. 

 

 
Figure 2. Stabilized approach. Reprinted from “Air Traffic Bulletin Procedures (ATB 
2019-1),” by Federal Aviation Administration Air Traffic Procedures, April 2019, p. 2. 
Retrieved from https://www.faa.gov/air_traffic/publications/media/atb_april_2019.pdf 
 



4 

 

 

Additionally, in Advisory Circular 91-79A the FAA informed operators of the 

importance of safety risk mitigation strategies regarding runway excursions and 

highlighted concerns associated with unstable approaches.  The FAA asserted that 

exceedances in stable approach criteria could be contributory factors in runway 

excursions (FAA, 2013).  For example, approach airspeed exceedance could cause a long 

landing, contributing to a runway overrun. 

In 2008, the FAA formed the Runway Safety Council in collaboration with 

industry, to address hazards associated with runway safety.  One of the stated goals of 

this cooperative effort was to decrease the number and severity of REs (FAA, 2008).  The 

FAA asserted that REs play a crucial role in the overall risk-based scope of runway 

safety, with over 30 percent of REs resulting in accidents (FAA, 2008).  The FAA and 

industry stakeholders subsequently developed action plans to reduce REs focused on 

identifying important factors that contribute to REs, using a data-driven approach (FAA, 

2015).    

An NTSB (2013) report presented details on the importance of aeronautical 

decision making (ADM) in the unstable approach/rejected landing process in an accident 

involving an Embraer 505 (also known as the Embraer Phenom 300 light jet) regional jet.  

The primary contributory cause of the accident was the failure of the pilots to execute a 

rejected landing when faced with evidence of an unstable approach (NTSB, 2013).  The 

NTSB noted that the correct approach reference speed was 110 knots indicated airspeed 

(KIAS); however, data from the flight data recorder (FDR) indicated an actual approach 

speed of 158 KIAS.  The approach speed exceedance contributed to a RE as the aircraft 

experienced a runway overrun, resulting in destruction of the aircraft  
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Runway excursion caused by unstable approach to a landing was also stated as the 

primary contributory factor in an average of 10 accidents and incidents per year from 

2005 to 2016, resulting in the NTSB issuing Safety Recommendations A-08-16 through 

A-08-20 (FAA, 2014a, 2014b; NTSB, 2016).  These Safety Recommendations detailed 

significant deficiencies in industry-based initiatives mitigating the risk of runway 

excursions through pilot training alone, substantiated with evidence presented in NASA 

Aviation Safety Reporting System (ASRS) pilot reports (NTSB, 2008).  The suggested 

lapse in ADM, which occurs when a pilot elects to continue an unstable approach to 

landing, thus risking a runway excursion, was defined as Unstable Approach Risk 

Misperception (UARM) in the research. 

Several examples of accidents with UARM-like contributory factors have been 

reported by the NTSB: 

• Asiana Air Flight 214 crashed at the San Francisco International Airport, 

due to a RE (veer-off) caused by exceedance of glidepath stabilized 

approach criteria (well below glidepath).  The accident resulted in 

destruction of the Boeing 777 as well as fatal injuries to three passengers 

(NTSB, 2014). 

• UPS Flight 1354 crashed while attempting a night instrument approach to 

a landing at the Birmingham-Shuttlesworth International Airport, 

Birmingham, Alabama in August 2013.  The NTSB reported the primary 

cause of the accident was the flight crew continuing an unstable approach 

to landing, resulting in destruction of the Airbus A300 as well as fatally 

injuring the sole occupants, the two pilots.  The report noted that the A300 
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exceeded stable approach criteria based on excessive glidepath deviations 

(below glidepath), resulting in the aircraft impacting the ground short of 

the runway (NTSB, 2014). 

• Federal Express (FedEx) Flight 14 crashed during landing at the Newark 

International Airport, Newark, New Jersey in July 1997, resulting in 

destruction of the McDonnell Douglas MD-11.  The NTSB stated that the 

probable cause of the accident was the Captain’s lapse in ADM, 

continuing a landing with evidence of exceedance of stabilized approach 

criteria (excessive descent rate).  The unstable approach resulted in a hard, 

bounced landing, leading to a loss of directional control on the runway, 

and ultimately a RE (NTSB, 2000).   

Based on these and other related aviation accidents and incidents associated with 

REs, the NTSB (2019b) issued Safety Alert 077 advising pilots that failure to reject a 

landing associated with an unstable approach could result in not only a RE, but also loss 

of control and/or collision with terrain.  In this Safety Alert, the NTSB advised pilots who 

face evidence of an unstable approach at 500 ft in visual conditions, to execute a rejected 

landing.  The NTSB also advised pilots to beware of operational pressures and 

continuation bias to continue a landing attempt when unstable, and reiterated the 

importance of performing a rejected landing when faced with evidence of an unstable 

approach (NTSB, 2019b). 

These examples of lapses in ADM, which resulted in the occurrence of UARM 

and REs, provide evidence of an aviation hazard.  The FAA explained the importance of 

ADM as it related to pilot risk management in AC 60-22, Aeronautical Decision Making.  
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In this document, the FAA detailed how pilot risk mismanagement could lead to aviation 

incidents and accidents (FAA, 1991). Orasansu et al. (2001) provided details on the 

criticality of risk perception in ADM with a discussion of several perspectives on risk 

perception factors such as: (a) organizational pressures, (b) pilot experience levels, (c) job 

responsibilities, and (d) mental modeling.  The researchers described pilot risk tolerance 

and perception as they relate to ADM as depicted in Figure 3.  

 

Figure 3. Risk management decision-making process. From “Pilot’s Handbook of 
Aeronautical Knowledge (FAA-H-8083-25),” by Federal Aviation Administration, 2016 
(https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/phak/media/04_p
hak_ch2.pdf). In the public domain. 
 
Additionally, the FAA (2016) asserted that the goal of risk management “is to proactively 

identify safety-related hazards and mitigate the associated risks” (p. 2-3).  The FAA 
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continued to describe how the development of good risk assessment skills were necessary 

for pilots to demonstrate successful ADM. 

Hunter (2005) provided much of the foundational research on pilot risk perception 

of hazards.  Hunter defined pilot risk perception as the cognitive ability to appraise and 

discern risk involved in the formulation of an environmental mental model.  The 

researcher detailed the misconception of risk perception when this appraisal of a situation 

is in error.  When pilots either underestimate the risk inherent in the situation or 

overestimate their own capabilities, pilot risk perception error is probable.  You and Han 

(2013) build on the work of Hunter (2005) with the assertion that the effects of airline 

pilot risk perception on threat and error management (TEM) are significant.  Effective 

risk perception aspects of ADM enable pilots to successfully identify hazards while 

addressing the cognitive demands inherent to flight operations. 

Orasanu et al. (2001) described how inappropriate risk perception could 

contribute to lapses in ADM.  The researchers described how continuation errors, also 

referred to as continuation bias by Dismukes (2010), could occur when pilot ADM and 

SA do not evolve and adapt to a dynamic environment.  For example, if evidence of an 

unstable approach becomes apparent to the flight crew and they elect to continue to 

landing, as originally planned, Dismukes (2010) and Orasanu et al. (2001) assert that 

continuation bias may have been experienced.  

Pilots have been trained to compare actual aircraft performance variables, such as 

(a) indicated airspeed, (b) descent rate, (c) angle of bank, and (d) engine thrust, with 

stable approach criteria recommended by the FAA and further customized by each 

operator.  Based on this assessment, pilots are expected to execute a rejected landing if 
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stable approach criteria have not been met (Moriarty & Jarvis, 2014).  Although the 

literature indicated that several variations of the term rejected landing have been used 

interchangeably (i.e., missed approach or go-around), for purposes of standardization, the 

term rejected landing was used in this research when referring to the procedure pilots 

perform to abandon a landing attempt. 

Although pilots have been trained to reject landings based on evidence of an 

unstable approach, a study by Giles (2013) on compliance with Standard Operating 

Procedures (SOP), an aspect of Aeronautical Decision Making, stated the following: 

For the most part pilots will comply with SOP, but when they (1) don’t agree with 
SOP, (2) don’t understand SOP or the risks associated with not complying with 
SOP, or (3) don’t feel adequately trained to know what SOP is, it is difficult to 
motivate them to comply. (p.2)  

  
Hence, pilots may not comply with stabilized approach criteria if they do not 

perceive the risk of a runway excursion associated with not executing the required 

rejected landing. 	The	FAA	suggested	that	one	possible	consideration	to	this	risk	

misperception	was	that 97% of unstabilized approaches have resulted in a safe landing, 

although 10% of these safe landings exceeded some parameter (e.g. landing long). 

Regardless, the FAA suggested that non-compliance with an SOP was indicative of 

ineffective ADM (FAA, 2016). 

With the continued advancements in FDR and Cockpit Voice Recorder (CVR) 

technology on commercial airliners, large volumes of data have been recorded and 

archived at a very rapid pace (Walker, 2017).  W. Vogt, G. Vogt, Gardner, and Haeffele 

(2014) define big data as data so large in volume that it would be impossible for one 

person to code and analyze in less than one year without utilizing a computer.  FDR 
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technology was originally used to assist accident investigations with mathematical 

analytical techniques concurrently evolving as FDR technology improved.  As a result of 

these developments, new applications in safety risk management (SRM) emerged.  

Examples of these SRM processes include the Flight Operations Quality Assurance 

(FOQA) and FDM programs (Treder & Crane, 2004).  

The advent of large data gathering methods has also provided the impetus for the 

continued development of advanced data analytical tools.  Other industries have utilized 

advanced techniques in computing capability to develop complex mathematical 

algorithms with the capability to handle large data (Tufféry, 2011).  Recently, aviation 

researchers have begun to utilize these advanced data analytical tools in the exploration 

of large flight data (Li, Das, Hansman, Palacios, & Srivastava, 2015).  Machine learning 

(ML) techniques have emerged as a preferred technique to rapidly analyze large volumes 

of flight data (Koteeswaran, Malarvizhi, Kannan, Sasikala, & Geetha, 2017).   

The purpose of the research was to utilize machine learning techniques to explore 

large flight data in order to predict UARM.  The exploration focused on the approach and 

landing phases of flight, specifically on unstable approaches.  Variable selection 

processes were based on the stable approach criteria as defined in AC 120-71A (FAA, 

2003) and AC-91-79A (FAA, 2014).  Variables were defined using the recorded flight 

data parameters including: (a) target approach speed deviation, (b) flap position, (c) 

landing gear position, (d) engine speed, and (e) glide path deviation.  Additional criteria 

were based on: (a) vertical and lateral position of the aircraft with reference to the landing 

runway, (b) energy state, and (c) landing configuration.  The information gathered in the 

data analysis was used to predict the probability of the pilot misperceiving the runway 
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excursion risk of continuing an unstable approach to landing.  Pilot misperception was 

represented by non-compliance (either intentional or not) with standard operating 

procedures regarding FAA guidance on required actions when faced with evidence of an 

unstabilized approach.  Machine learning techniques were used to populate and compare 

various predictive models, and to determine the most accurate model, which was then 

used to make predictions of the probability of the manifestation of the target dependent 

variable, UARM.  The occurrence of UARM contradicts best safety practices as 

recommended by the NTSB and the guidance by the FAA, which is considered the 

minimum requirement in the operations specifications (OPSPECS) of any air carrier 

(FAA, 2003, 2014; NTSB, 2016, 2019b). 

Background 

The background on stable approaches began in 1997 with NTSB Safety 

Recommendation A-97-85 that requested the FAA require all 14 CFR Part 121 and 135 

operators to provide guidance for pilots regarding critical safety-of-flight decision-

making, particularly regarding stabilized approaches.  A Part 121 air carrier (i.e. airliners) 

is an alias for scheduled passenger/freight operations and a Part 135 carrier comprises 

only commuter and on-demand operations.  In response to the NTSB recommendations, 

the FAA issued Flight Standards Handbook Bulletin for Air Transportation (HBAT) 98-

22, stabilized approaches.  A key component of this document was the requirement for 

all 14 CFR Part 121 and 135 operators to establish defined criteria for stabilized 

approaches and also to train pilots to perform rejected landings if stabilized approach 

conditions were not met (NTSB, 2001).  Although unstable approaches were also a 
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known hazard with general aviation (GA) aircraft, these operators were considered out of 

scope because data have only been obtained for a Part 121 carrier. 

Despite these initiatives, American Airlines flight 1420 crashed during a landing 

attempt in June 1999 at the Little Rock National Airport in Little Rock, Arkansas. The 

McDonnell Douglas MD-82 aircraft overran the runway resulting in destruction of the 

aircraft.  The Captain and 10 passengers were fatally injured.  In addition to attempting to 

land in spite of evidence indicating exceedance of aircraft operating manual (AOM) 

crosswind limitations, the aircraft was not in the correct landing configuration (i.e. 

spoilers were not armed), as required for a stabilized approach.  The spoilers are normally 

armed to automatically deploy upon touchdown, reducing lift/increasing drag and 

assisting in aircraft deceleration.  The spoilers were particularly important on this flight 

as the runway was wet and the increased drag could have assisted in the prevention of 

hydroplaning (i.e. tires losing contact with the runway surface, on a thin layer of water).  

Because the spoilers were not armed, upon touchdown they did not automatically deploy, 

or extend, resulting in excessive rollout speeds and hydroplaning, which contributed to 

the aircraft being unable to stop prior to overrunning the runway (NTSB, 2001). 

The NTSB (2001) noted that when the AA 1420 accident occurred in 1999, the 

only written guidance available to the crew concerning the stabilized approach concept 

was a vaguely worded description of a landing technique in the carriers’ SOPs. The 

NTSB (2001) stated that: 

The only stabilized approach guidance provided in aircrew training at AA 

stipulated that the minimum recommended stabilized approach altitudes for IFR 

and visual flight rules (VFR) conditions were 1,000 and 500 feet, respectively, 
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and that landing flaps were to be selected by 1,000 feet above ground level. 

Before descending below the specified minimum stabilized approach altitude, the 

airplane was to be in the final landing configuration (gear down and final flaps), 

on approach speed, on the proper flightpath, at the proper sink rate, and at 

stabilized thrust; these conditions were expected to be maintained throughout the 

rest of the approach. However, the guidance did not define what was meant by 

“on” approach speed, “on” the proper flightpath, and “at” the proper sink rate.  In 

addition, the guidance did not describe the necessary flight crew actions if the 

stabilized approach criteria were not met.  Information presented in the 

“Techniques” section was not considered by American to be required procedures 

but rather suggested ways of accomplishing a task. (p.160) 

The FAA responded to the recommendations by the NTSB with the development 

of the stabilized approach concept.  The fundamental premise of the stabilized approach 

concept was that a general description of the aircraft state in the final approach and 

landing phases of flight should be based on three main aspects: (a) aircraft position on 

glide path and lateral extended runway centerline, (b) energy state, and (c) landing 

configuration (FAA, 2003).  More restrictive criteria were left to the discretion of the 

operator and with the approval of each operator’s FAA Principal Operations Inspector 

(POI).  The POI is tasked with ensuring air carrier compliance with their FAA approved 

Operator SOPs.  

Campbell, Schroeder, Shah, and Zaal (2018) provided additional information 

regarding the collaboration between the FAA, NASA, and the NTSB on unstable 

approaches and pilot rejected landing ADM.  The researchers detailed NTSB assertions 
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that AC 91-79A did not provide specific guidance on rejected landing requirements as 

recommended, which resulted in the NTSB closing the recommendation in 2012 with an 

unsatisfactory response.  Campbell et al. (2018) contended that previous studies had not 

accurately investigated the root causes of the lack of compliance regarding rejected 

landings following an unstable approach.  The researchers insisted that stable approach 

criteria were too complex and restrictive to the operational environment (Campbell et al., 

2018). 

In 2000, the FAA developed the first advisory circular on standard operating 

procedures (SOPs), now universally recognized as a basic component in an 

organization’s safety management system (SMS) (FAA, 2003).  An organization’s SOPs 

are the foundation to effective crew performance and help pilots maintain an accurate 

mental model of an aviation task.  The FAA has provided air carriers with guidance that a 

rejected landing is a successful outcome when given evidence of an unstable approach 

(FAA, 2014).  Analysis of FDR data in air carriers shows that the frequency of unstable 

approaches was 4% in 2009.  Additionally, line operations safety audit (LOSA) jump seat 

observers on the flight decks of 4532 commercial flights between 2002 and 2006 

reported, based on visual observation of flight instrument indications, that 5% of 

approaches were unstable and of those only 4% of unstable approaches resulted in a 

rejected landing (Moriarty & Jarvis, 2014).   

The Flight Safety Foundation (2009) concluded that the number of rejected 

landings greatly underestimates the number of unstable approaches.  This evidence was 

based on data gathered not only by the FSF but also by the collaborative industry based 

Commercial Aviation Safety Team, formed by the FAA in 2008 to address runway safety 
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(FAA, 2008).  Conclusions made by both the FAA and the FSF suggest that current risk 

mitigation strategies have fallen short of stated objectives by the NTSB and FAA in their 

collaboration on the Runway Safety Council (RSC) (FSF, 2009).  One of the main 

objectives of the RSC was to reduce the risk of REs (FAA, 2014).  Although aeronautical 

decision making, human error, and situation awareness have been well represented in the 

literature, little work has been presented regarding the use of machine learning to predict 

probability of pilot misperception of the runway excursion hazard, when faced with 

evidence of an unstable approach.   

Statement of the Problem 

Runway excursions are an aviation safety risk associated with hazards inherent in 

unstable approaches.  The NTSB described problems of continuing unstable approach to 

landing in Safety Alert 077 (2019b).  In this document, the NTSB (2019b) listed 

problems associated with unstable approaches as: 

• Failure to establish and maintain a stabilized approach, or continuing an 

unstabilized approach, could lead to landing too fast or too far down the 

runway, potentially resulting in a runway excursion, loss of control, or 

collision with terrain. 

• Regardless of the type of aircraft, the level of pilot experience, or whether 

the flight was being conducted under instrument flight rules or visual 

flight rules, an unstabilized approach was a key contributor to runway 

excursions, loss of control, and terrain collisions control. (p. 1)  

The FAA and NTSB have consistently identified unstable approaches as one of 

the most frequent causal factors in aircraft runway excursions, with flight data indicating 
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an average of 10 accidents per year from 2005 to 2016 (FAA, 2014, 2016; NTSB, 2010, 

2016).  The FSF (2009) presented details concerning the hazards associated with unstable 

approaches and the risk of runway excursion that resulted when pilots elected to continue 

to landing.  The FAA, NASA, and the NTSB have confirmed the existence of the hazard 

and have made efforts to address the issue with guidance to air carriers regarding the 

following: (a) aircrew training, (b) SOP enhancement, and (c) safety mitigation strategies 

(e.g. pilot simulator training scenarios).  However, an analysis of flight data gathered via 

LOSA, FOQA, and NASA ASRS voluntary pilot reports revealed that this hazard 

continued to exist (FAA, 2003, 2014; FSF, 2009; NTSB, 2014a, 2014b, 2016, 2019b). 

The NTSB has communicated its concern that even though air carriers now have 

stabilized approach guidance, as described in FAA Flight Standards HBAT 98-22, 

runway excursions have continued to occur in part due to lapses in pilot perception of the 

risk when faced with evidence of an unstable approach (FSF, 2009; NTSB, 2001, 2016, 

2019b).  

Purpose Statement 

The purpose of this research was to utilize machine learning techniques to explore 

large flight data in order to predict UARM.  The study had two main objectives: (a) use 

machine learning algorithms to develop a prediction model for UARM, and (b) determine 

variables that contribute to the prediction of UARM.  Predictive models were constructed 

based on advanced machine learning algorithms using 186 recorded flight data variables.  

Specific machine learning techniques applied to the flight data included: (a) decision tree, 

(b) logistic regression, (c) neural network, (d) support vector machine, (e) random forest, 

and (f) gradient boost machine algorithms.  The flight data were recorded by FDRs on a 
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fleet of 35 regional jets over a period of four years (2001-2004).  NASA had de-identified 

these data and made them available to the public.  These data points were analyzed to 

identify unstable approaches and to construct prediction models.  Once the models were 

built and validated, the model with the highest predictive score was used to predict the 

probability of UARM, which could be used to identify RE hazard.  Additionally, SAS™ 

EM® software was used to rank flight data variables in order of importance to the 

occurrence of UARM.  SAS™ EM® defined variable worth as the rank order (from 0 to 

1) of input variables determined by the Chi-square statistic and described the strength of 

the relationship between categorical input variables and the target variable.  SAS™ EM® 

used binning to derive categorical input variables from continuous input variables 

(Sarma, 2013).   

Significance of the Study 

The research helps to enhance the effectiveness of commercial airline pilot 

simulator training as a hazard mitigation strategy by utilizing scenarios involving 

unstable approaches.  Given the ability to predict UARM and the identification of flight 

variables most important in the prediction of UARM, airline training managers can 

evaluate and improve pilot ADM specifically to mitigate runway excursions.  

Theoretical implications. The development of prediction models based on the 

application of ML algorithms to recorded flight data was a seminal study that focused on 

using data mining of data to build models to predict a desired or undesired event.  

Additionally, the results of predictive algorithms could be used to detect lapses in 

decision making in other high risk fields such as medicine (e.g., surgery).  For example, 

medical professionals perform many of the similar tasks requiring decisions to be made 
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based on safety of the patient.  This decision-making ability relies on the management of 

risk and the perception of risk versus an estimate of one’s ability to complete the task; the 

predictive algorithm could provide the capability to the medical professional to mitigate 

and reduce such risk  The ability to predetermine exceedance could also contribute to the 

evolution of pilot alerting technologies, such as Honeywell’s SmartLanding™ software 

algorithms that increase pilot SA of the aircraft state in the approach and landing phases 

of flight. 

Practical implications.  Key beneficiaries of the research are airline pilot 

simulator training programs and airline Safety Management System managers.  The 

ability of airline pilot training managers to not only predict UARM but also identify 

hazardous trends in aircraft state variables involved in ADM could have a positive impact 

on airline safety risk mitigation strategies inherent in pilot simulator training programs, 

such as developing realistic runway excursion scenarios.  Results of the study could be 

used to further refine not only FAA (2014) stabilized approach criteria but also in the 

oversight of air carrier pilot training programs.  

Safety Management Systems managers could use the results of the study to 

improve SRM effectiveness, as required under 14CFR Part 5.  Because SMS programs 

have traditionally relied on hazard identification using accident and incident reports 

rather than proactive measures, predictive capabilities could be beneficial.  The ability to 

predict UARM could provide SMS managers with a predictive tool that would enhance 

safety risk mitigation effectiveness. 
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Research Questions 

The study was exploratory and data-driven in nature, based on the following 

research questions (RQ):  

• RQ 1: How can the application of data-mining and machine learning techniques to 

recorded flight data be used to predict the probability of Unstable Approach Risk 

Misperception by the pilot? 

• RQ 2: What flight data variables are the most important predictors of pilot 

misperception of a runway excursion hazard as evidenced by continuing an unstable 

approach to a landing?  

Delimitations 

Exceedance criteria described in FAA AC 120-71A were considered the threshold 

for determining an unstable approach.  Reference approach speed criteria excluded 

Category A approach speeds (i.e. ≤ 90 knots), as that category generally applies to 

helicopters (no stall speed) and light GA airplanes certified under 14 CFR §23.49 (FAA, 

2012). 

Limitations and Assumptions 

Limitations.  The data were limited to the 186 flight variables provided by the 

NASA public access website for four years (2001-2004) of flight operations by 35 

regional jet aircraft.  No data were available regarding passenger configuration, which is 

used by the FAA to describe regional jet commercial aircraft (less than 100 passengers) 

(FAA, 2005).  Because CVR data were not available for the study, CRM influence on 

pilot misperception could not be analyzed.  Additionally, pilot/automation interface was 

also not available.  Because only FDR aircraft state data were available, the study could 
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not consider any other variables that may have contributed to pilot UARM, such as 

weather (e.g. turbulence, wind shear, cross-winds), emergency or abnormal conditions 

(e.g. low fuel, engine or flight control anomalies), runway conditions (e.g. contamination 

with snow, water, lights) or visual illusions.  In addition to weather considerations, 

day/night flight conditions were not provided and as such, were not considered in the 

analysis.  No data were available to indicate if any of the approaches resulted in an actual 

runway excursion.   

Assumptions.  The 186 flight data variables were sufficient to develop predictive 

models.  The data were redacted for any identifying information such as specific air 

carrier, aircraft type, airports, and name/type of instrument approach, hence assumptions 

pertaining to certain approach parameters such as approach speed, glideslope and landing 

configuration were made.  Because FAA guidelines have allowed for more restrictive 

criteria to be developed by an air carrier, it was assumed that the air carrier had an SOP 

that followed the FAA stable approach guidance at least as restrictive as those criteria 

defined in AC 120-71A.  Although there was no regulatory definition of regional jets, the 

FAA used a passenger configuration of less than 100 passengers to describe RJs in AC 

150/525-4b, Runway Length Requirements for Airport Design (FAA, 2005).  It was 

assumed that the flight data were sampled from RJs configured for less than 100 

passengers. 

Approaches were assumed to be conducted on a three-degree glideslope, and any 

flap setting greater than zero was assumed to be a proper landing configuration.  Pilot 

indications of stabilized approach criteria were assumed to be provided with standard 

transport aircraft flight instruments.  For example, descent rate, airspeed, and glidepath 
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indications were assumed to be provided to the pilots on industry standard pilot display 

technology, such as electronic flight instrument systems (EFIS), primary flight display 

(PFD) and navigational display (ND) avionics.  Target reference approach speed range 

was assumed to be from 105 to 140 knots indicated airspeed and was based on FAA 

approach category airspeed determination characteristics detailed in Title 14 CFR, 

Chapter I, Subchapter F, Part 97, Subpart A., § 97.3 (FAA, 2012).  Additionally, target 

approach speed was assumed to be calculated based on a zero-wind condition.  Pilots 

flying the aircraft represented in the study were fully qualified professional pilots.  

Summary 

The FAA and NTSB have identified unstable approaches as one of the primary 

contributory factors to runway excursion hazards (FAA, 2014; NTSB, 2000, 2001, 2014, 

2014, 2016, 2019b).  In the effort to enhance runway safety, the FAA has stipulated that 

operators adhere to criteria defining stable approaches (FAA, 2003, 2014).  Data 

indicated that although unstable approaches still occurred, pilots may not have always 

followed the FAA guidance by performing a rejected landing (FAA, 2014; FSF, 2009). 

Non-compliance, whether intentional or not, of FAA approved air carrier 

OPSPECS and SOPs concerning stabilized approaches, suggested a lapse in pilot ADM, 

and often had been included as a primary contributory factor in accidents and incidents 

involving runway excursions (NTSB, 2016, 2019b).  With the advent and deployment of 

advanced digital data recording devices, required under 14CFR §91.609 for all air 

carriers with an operating certificate, opportunities exist to sample and analyze recorded 

flight data.  Concurrently, recent developments in complex mathematical machine 

learning algorithms have improved research capability regarding the analysis of these 
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flight data (Oehling & Barry, 2019).  Data mining techniques, both exploratory and 

predictive, have provided aviation researchers the tools necessary to both analyze these 

large flight data and also to predict abnormal flight occurrences. 

The results of the study present an example of aviation research using machine 

learning to predict Unstable Approach Risk Misperception.  Subsequent chapters present 

a review of relevant peer-reviewed research, including gaps in the literature.  Six machine 

learning algorithms were used for the analysis to identify which most accurately modeled 

the prediction of the probability of pilot misperception of runway excursion risk, as well 

as to identify the stabilized approach criteria flight variables associated with frequent 

non-compliance of rejected landing guidelines.  Finally, recommendations for further 

research are made, based on how large flight data monitoring can be used to improve and 

enhance aviation safety through training, procedures, and aircraft flight instrument 

design.  

Definitions of Terms 

AVSKD Aviation Safety Knowledge Discovery Process.  

The process of analyzing aviation data, beginning 

with the collection of raw FOQA or FDM data via 

aircraft flight data recorders, though several phases: 

data preparation, detection, feature selection, and 

knowledge discovery.  For the purposes of the 

research study, the AVSKD process concludes with 

the assessment of predictive models, as described in 

Chapter III (Mathews et al., 2013). 
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Data Mining Data mining is the set of methods and techniques 

for exploring and analyzing large data sets, in order 

to find certain unknown or hidden rules, 

associations or tendencies.  It is the art of extracting 

information (knowledge) from the data.  For the 

purposes of the study, predictive data mining 

techniques are used to extrapolate new information 

based on the present information (Tufféry, 2011, p. 

4). 

Decision Tree A decision tree represents a hierarchical 

segmentation of the data and is composed of a set of 

rules that can be applied to partition the data into 

disjoint groups (Sarma, 2013, p. 196). 

Energy State Management The interrelationship between kinetic energy 

(airspeed), potential energy (altitude), and chemical 

energy (power).  Refers to pilot energy state 

management technique options available for pilots 

to change or maintain a safe and stable energy state, 

including external factors and corrective techniques 

(FAA, 2017a, p. 3).   

Gradient Boost Machine A form of ML technique, using ensemble learning, 

used in the construction of predictive models, 
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generally classification and regression.  Typically, 

weaker decision trees are used in the ensemble. 

Neural Networks A neural network is a complex nonlinear function of 

inputs, divided into different layers and different 

units within each layer.  A large number of 

nonlinear functions can be generated and fitted to 

the data by means of different architectural 

specifications (Sarma, 2013, p. 362). This 

architecture can be based on that of the brain, 

organized in neurons and synapses, and takes the 

form of interconnected units (or formal neurons), 

with each continuous input variable corresponding 

to a unit at a first level, called the input layer, and 

each category of a qualitative variable also 

corresponding to a unit of the input layer (Tufféry, 

2011, p. 217). 

Random Forest A form of ML learning, using ensemble learning for 

purposes of classification and regression.  Builds 

models consisting of multiple decision trees for 

training and produces a mode of classes or mean 

prediction of the individual decision tree models. 

Runway Excursion This term is limited to veer off or overrun from the 

runway surface that occurs while an aircraft is 
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landing, based mainly on an unstable approach 

(FAA, 2014). 

SAS® Enterprise MinerTM  SAS® Enterprise Miner™ is a software package 

consisting of different levels of data, such as textual 

or numeric, and was used for the construction and 

analysis of predictive models.  SAS EM utilizes 

machine-learning algorithms that streamline the 

data mining process and create highly accurate 

predictive and descriptive models that are based on 

analysis of vast amounts of data (Sarma, 2013). 

Stabilized Approach Concept  “A stabilized approach is characterized by a 

constant-angle, constant-rate of descent approach 

profile ending near the touchdown point, where the 

landing maneuver begins” (FAA, 2003, Appendix 

2, para 2).  The energy state, landing configuration, 

aircraft location approach criteria are applied at 500 

ft height above touchdown. 

Standard Operating Procedures Aircrew procedures developed by an airline 

for normal, abnormal, and emergency procedure 

compliance to ensure safe, efficient, and on-time 

flight performance (Giles, 2013). 

Support Vector Machine A machine learning model using algorithms that 

analyze data for classification and regression 
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analysis.  SVMs can perform both linear and non-

linear classification using the kernel trick.  SVMs 

can be used in both supervised and non-supervised 

approaches, in addition to clustering techniques in 

data analysis (Lauer & Bloch, 2008). 

Unstable Approach Risk Misperception Pilot lapses in aeronautical decision 

making occurring when evidence of an unstable 

approach exists, and the pilot elects to continue the 

approach to a landing, risking a runway excursion 

(FAA, 2014). 

List of Acronyms 

AC     Advisory Circular 

ADM     Aeronautical Decision Making 

ADMS    Aircraft Diagnostic and Maintenance System 

ADS-B   Automatic Dependent Surveillance-Broadcast 

AGL     Above Ground Level  

AOM    Aircraft Operating Manual 

ASPM    Aviation System Performance Metrics 

ASRS    Aviation Safety Reporting System 

AVSKD   Aviation Safety Knowledge Discovery Process 

BADA    Base of Aircraft Data 

BCA    Boeing Commercial Airplanes 

BLS    Bureau of Labor Statistics 
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CART    Classification and Regression Tree 

CAST     Commercial Aviation Safety Team 

CEDAR Comprehensive Electronic Data Analysis and 

Reporting 

CFR    Code of Federal Regulations 

CI    Cost Index 

CRM    Crew Resource Management  

CVR     Cockpit Voice Recorder 

DH    Decision Height 

DWH    Data Warehouse 

EFIS    Electronic Flight Instrument System 

FAA     Federal Aviation Administration 

FDM    Flight Data Monitoring 

FDR     Flight Data Recorder 

FOQA     Flight Operations Quality Assurance 

FSF     Flight Safety Foundation 

GA    General Aviation 

HAS    Hazardous Attitude Scale 

HBAT     Handbook Bulletin for Air Transportation 

HIP    Human Information Processing 

IATA    International Air Transport Association 

ICAO     International Civil Aviation Organization 

IFR     Instrument Flight Rules 
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ILS     Instrument Landing System 

IMC     Instrument Meteorological Conditions 

LOSA    Line Operations Safety Audit 

MKAD   Multiple kernel anomaly detection 

ML    Machine Learning 

MLM    Multilevel Modeling 

MTS    Multi-variate Time Series Search 

NAS     National Airspace System 

NASA     National Aeronautics and Space Administration 

ND    Navigational Display 

NOAA    National Oceanic Atmospheric Administration 

NTSB     National Transportation Safety Board 

OPSPECS   Operations Specifications 

PFD    Primary Flight Display 

POI    Principal Operations Inspector 

RE    Runway Excursion 

SA    Situation Awareness 

SMS    Safety Management Systems 

SOP     Standard Operating Procedures 

SVM    Support Vector Machine 

TAWS    Terrain Awareness and Warning System 

TEM    Threat Error Management 

TOD    Top of Descent 
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UARM   Unstable Approach Risk Misperception 

UPS     United Parcel Service 

VFR     Visual Flight Rules 

VIPR    Vehicle Integrated Prognostics Reasoner 

VMC     Visual Meteorological Conditions 

WOW    Weight on Wheels 
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CHAPTER II 

REVIEW OF THE RELEVANT LITERATURE 

The following chapter presents a review of extant literature pertaining to the topic 

of the research and consists of three sections: (a) FAA guidance for stabilized 

approaches, (b) a review of data and text mining methodologies in aviation research, and 

(c) a description of the machine learning algorithms and data processing techniques that 

were applied in this research.  

Federal Aviation Administration Guidance for Stabilized Approaches 

The FAA has asserted that stabilized approaches are one of the most important 

factors in safe landings.  One of the products that resulted from a working group study by 

the Commercial Aviation Safety Team was the creation of FAA Advisory Circular (AC) 

120-71A: Standard Operating Procedures for Flight Deck Crewmembers (2003).  In this 

AC, the FAA describes a stabilized approach as one in which all landing checklists and 

approach procedures have been completed, the aircraft is in landing configuration, on 

constant rate of descent, with the engines providing stable thrust, and in a position to 

make a normal landing on the runway in use.  Appendix 2 of the AC provides other 

specific details of a stabilized approach:  

• Flight should be stabilized by 1000’ Height Above Touchdown (HAT) in 

Instrument Meteorological Conditions (IMC) and by 500’ HAT in Visual 

Meteorological Conditions (VMC). 

• The airplane is on the correct track. 

• The airplane is in the proper landing configuration (i.e. landing gear, flaps and 

slats, and speed brakes). 
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• After glide path intercept, the pilot flying requires no more than normal 

bracketing corrections to maintain the correct track and desired profile (3° 

descent angle, nominal) to landing within the touchdown zone.  

• The airplane speed is within the acceptable range specified in the approved 

operating manual used by the pilot (e.g. Vref). 

• The rate of descent is no greater than 1000 feet per minute (fpm). 

• If an expected rate of descent greater than 1000 fpm is planned, a special 

approach briefing should be performed. 

• Power setting is appropriate for the landing configuration selected and is within 

the permissible power range for approach specified in the approved operating 

manual used by the pilot (p. A2.1) 

The FAA (2003) allows for nominal bracketing adjustments related to engine 

thrust, descent rate and angle of bank.  Recommended ranges allow for more restrictive 

limitations, but are provided as follows: 

• Angle of bank less than 30° 

• Descent rate ± 300 fpm from target 

• Operator specified thrust management, per flight manual 

• Momentary exceedances are acceptable, but continuous exceedance is not 

considered acceptable (p. A2.2). 

In the aftermath of the accident involving American Airlines Flight 1420 on June 

1, 1999, the NTSB (2001) recommended that the FAA further define stabilized approach 

criteria.  In response to the NTSB recommendations, the FAA provided a brief 

summarization of FAA stabilized approach oversight efforts.  The FAA asserted that 
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approach gates could be customized by a carrier as milestone points in which flight crew 

are to assess performance criteria during an approach, in order to maintain situation 

awareness concerning stabilized approach indications.  These approach gates are 

predetermined intervals at which the flight crew compare aircraft glidepath, lateral track, 

and airspeed data against stabilized approach criteria.  It is at these intervals where the 

flight crew must use the information determined from the stabilized approach criteria to 

make the decision to either continue the approach to landing or to execute a rejected 

landing (NTSB, 2001). 

The FAA assigns a Principal Operations Inspector (POI) to provide regulatory 

oversight and guidance to each air carrier.  Among other functions, the POI applies 

federal oversight to the carrier on the stabilized approach concept stated in FAA Order 

8900.1 (2007) as follows: 

• Airspeed within 5 knots of approach speed at the 100-foot decision height 

(DH), 

• The flight deck remains within the lateral confines of the runway at the 100-

foot DH, 

• After passing the outer marker (OM), the glidepath deviation does not exceed 

one half of full deflection, and 

• After passing the middle marker (MM), no unusual changes in aircraft occur. 

(p. 4-221) 

Turbojet aircraft operators must incorporate procedures that are based on 

stabilized approach criteria set forth in FAA Order 8900.1, as well as the recommended 

guidelines provided in FAA AC 120-71A (subsequently AC 91-79A).  Additionally, 
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operator standard operating procedures (SOPs) may incorporate more restrictive 

stabilized approach criteria than that provided by FAA guidance from these two 

documents.  Each carrier must provide flight crew training and SOP materials which 

contain a description of acceptable deviations from glidepath and lateral track when 

covering approach and landing procedures. Once the operator's training programs are 

approved by the FAA, the carrier is not free to revise these procedures without approval 

from their POI. 

The purpose of the approach gate criterion is to provide the flight crew with target 

values to fly, as displayed on flight deck instruments (to assess the feasibility and safety 

of continuing the approach to landing or to execute a rejected landing).  In its report on 

AA Flight 1420, the NTSB notes that the pilots should have executed a rejected landing 

during the final approach, when stabilized approach criteria were not met.  The failure of 

the flight crew to configure the landing flap configuration before reaching 1,000 feet 

AGL, and their failure to maintain a normal rate of descent, combined with deteriorating 

weather conditions, decreased the safety margin enough that the pilots should have 

executed a rejected landing (NTSB, 2001).  

Unstable approaches and runway excursions.  The NTSB (2013) presents 

additional details on the importance of ADM in the rejected landing process in its report 

on the accident involving an Embraer 505 regional jet.  The NTSB listed the primary 

contributory cause of the accident as failure of the pilots to execute a rejected landing 

when faced with evidence of an unstable approach.  The correct approach reference speed 

was 110 knots indicated airspeed (KIAS), and the FDR data indicated that an actual 

approach speed of 158 KIAS was flown.  The approach speed exceedance contributed to 
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a RE as the aircraft experienced a runway overrun, resulting in destruction of the aircraft.  

Runway excursion caused by unstable approach landing was stated as the primary 

contributory factor in this accident, as well as approximately 10 other accidents and 

incidents per year from 2005 to 2016 resulting in the NTSB issuing Safety 

Recommendations A-08-16 through A-08-20 (FAA, 2014a, 2014b; NTSB, 2016).  These 

Safety Recommendations detailed significant deficiencies in industry-based initiatives 

mitigating the risk of runway excursions with pilot training substantiated with evidence 

presented in NASA ASRS pilot reports (NTSB, 2008). 

Several recent examples of accidents with UARM-like contributory factors are 

described by the NTSB: 

• Asiana Air Flight 214 crashed at the San Francisco International Airport, due to a 

RE caused by exceedance of glidepath stabilized approach criteria.  The accident 

resulted in destruction of the Boeing 777 as well as fatal injuries to three 

passengers (NTSB, 2014).   

• UPS Flight 1354 crashed while attempting an approach to landing at the 

Birmingham-Shuttlesworth International Airport, Birmingham, Alabama in 

August 2013.  The NTSB lists the primary cause of the accident as the flight crew 

continuing an unstable approach to landing, resulting in destruction of the Airbus 

A300 as well as fatally injuring the sole occupants, the two pilots.  The NTSB 

reports that the A300 exceeded stable approach criteria based on incorrect landing 

configuration and excessive glidepath deviations, resulting in the aircraft 

impacting the ground short of the runway (NTSB, 2014). 
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• Federal Express (FedEx) Flight 14 crashed during landing at the Newark 

International Airport, Newark, New Jersey in July 1997, resulting in destruction 

of the McDonnell Douglas MD-11The NTSB states that the probable cause of the 

accident was the Captain’s lapse in ADM, continuing a landing with evidence of 

exceedance of stabilized approach criteria (i.e. excessive descent rate).  The 

unstable approach resulted in a hard landing, bounce, loss of control, and 

ultimately a RE (NTSB, 2000).  

These examples of lapses in aeronautical decision making, which result in the 

occurrence of UARM and REs, provide evidence of an aviation hazard.  Large amounts 

of flight operations data have been collected with the advent of Flight Data Monitoring 

technologies.  The evolution of advanced and complex data processing algorithms has 

provided aviation researchers with the opportunity to explore what patterns or 

relationships might exist in these large flight data.   

Pilot risk perception and risk tolerance.  A key point in the study is the 

prediction of pilot risk misperception.  The FAA (1991) relates pilot risk management to 

task accomplishment in AC 60-22, Aeronautical Decision Making, with the self-

assessment technique of asking oneself “Is the success of the task worth the risk?” (p. 

22).  Orasanu et al. (2001) describe a relative lack of aviation research on pilot risk 

perception and risk tolerance.  The researchers continue to describe the importance of 

better understanding of pilot risk perception and risk tolerance in the ADM process.  

Martinussen and Hunter (2010) assert that pilot risk assessment and management are 

crucial aspects of pilot ADM.  They then define pilot risk perception as “recognition of 

the risk inherent in a situation” (p. 198).  Hunter (2005) professes that pilots can be prone 
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to display poor risk judgement and substantially underestimate risk.  The researcher’s 

conclusions are based on evidence of pilots pressing on when faced with evidence of 

deteriorating performance conditions, while underestimating the impact of external 

factors to the aircraft and overestimating their self-capacity to accomplish certain tasks.  

The conclusions of Hunter (2005) are in agreement with those reached by both Orasansu 

et al. (2001) and Dismukes (2010) regarding the propensity of pilots to exhibit lapses in 

ADM regarding continuation bias (i.e., pressing on or continuation errors).  Hunter 

(2005) states that risk perception can be mediated by both pilot self-assessment, as well 

as more accurate mental modeling of the environment.  Martinussen and Hunter (2010) 

conclude that risk perception is primarily a cognitive activity and involves the accurate 

perception and projection of aircraft state and external factors, and the resulting mental 

model, to maintain a high level of situation awareness.   

Hunter (2005) provides further evidence of pilot risk perception measurement 

using a Hazardous Attitude Scale (HAS).  Airline pilots were presented with 10 different 

aviation scenarios and provided alternative solutions to assess ADM.  Hunter concludes 

that poor risk perception was a more significant variable than poor risk tolerance.  For 

example, pilots who experienced significantly more hazardous events generally rated 

hazardous scenarios less risky than those pilots who had experienced fewer hazardous 

events.  Hunter subsequently deduces that poor correlation between pilot hazardous 

experiences and estimation of risk supports this supposition.  

Hunter (2005) further expands the definition of pilot risk perception as the 

cognitive ability of the pilot to appraise and discern risk, while involved in the process of 

formulating an environmental mental model.  The researcher goes on to describe the 
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misconception of risk perception when this appraisal of a situation is in error.  When the 

pilot either underestimates the risk inherent in the situation or overestimates his/her own 

capabilities, pilot risk perception error is probable.   

You and Han (2013) discuss the effects of risk perception and flight experience 

on airline pilot attitudes relative to safety operational behaviors.  They also state that pilot 

risk perception is a crucial pilot attribute regarding hazards.  Their research affirms their 

supposition that pilot risk perception enables pilots to mitigate risk, while addressing the 

cognitive demands inherent to flight operations.   

Benbassat and Abramson (2002) provide research on pilot landing risk perception 

with their study on landing accidents and pilot risk perception.  The researchers analyzed 

over 6,000 NTSB accident reports whose contributory factors included runway 

excursions.  The researchers also surveyed student and GA pilots on their perceptions of 

risk in the landing flare maneuver.  Their findings corroborate those of Hunter (2005) 

regarding pilot overestimation of risk inherent in landings.  The researchers recommend 

further research involving pilot perception of risk in the approach and landing phases of 

flight. 

Ju, Ji, Lan, and You (2017) describe how narcissistic personality issues factor into 

risk perception and how overoptimistic expectations affect pilot perception of risk in 

Chinese pilots.  Recommendations based on their findings include the necessity for pilots 

to accurately compare risk estimates with actual risk.  They further describe the 

challenges inherent in the measurement and assessment of aviation risk.  However, they 

assert that the measurement of pilot risk perception is less difficult and can be determined 

based on optimism bias to reflect risk estimation.  Thus, while their study focused on 
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optimism bias, they recommend further research on other cognitive biases which could 

significantly affect accuracy of risk perception.  IATA (2017) corroborates results of the 

study with the assertion that pilots may sometimes continue an unstable approach to 

landing due to factors such as peer pressure, organizational pressure to meet schedule, 

and perceptions of company policy rejected landing decision making.  IATA also 

suggests that pilot perception risk associated with the rejected landing maneuver is higher 

than continuing an unstable approach to landing. 

Campbell, Schroeder, Shah, and Zaal (2018) conducted experimental research at 

the NASA Ames Research Center on perceptions of pilot risk concerning unstable 

approach recovery to landing and risk perception of various unstable approach 

conditions.  Research was conducted using 36 professional airline pilot subjects and three 

full motion Level-D flight simulators: B747, B737, and A330.  Level D flight simulators 

were the highest rated of four ratings (A through D) and provided full motion feedback to 

the pilots by means of a motion platform.  Level D simulators also provided accurate 

flight control feedback to pilots and simulated other aircraft systems including avionics 

and advanced electronic flight instruments (EFIS).  The FAA provided certification 

approval guidance to air carriers in AC 61-136A, FAA Approval of Aviation Training 

Devices and Their Use for Training and Experience (FAA, 2014b).  The researchers 

utilized an experimental design that removed the rejected landing decision-making 

process in order to assess landing performance under various unstable approach 

conditions.  The stated objective of the research was to determine if more effective 

rejected landing criteria were possible.  One ancillary purpose of this research was to 

investigate pilot landing performance under various approach states to determine which 
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limitations were most critical in pilot landings.  Results indicated that energy state 

management parameters associated with excessive approach speeds and descent rate were 

the most important predictors in pilot landing performance.  Although not listed in 

experimental controls, energy state management associated with engine power settings 

was observed to be an important predictor of landing performance and was recommended 

by the researchers to be more closely scrutinized in future research (Campbell, Schroeder, 

Shah & Zaal, 2018). 

Aviation Research Using Data and Text Mining Methods 

Data mining methods.  With the rapid accumulation of large data becoming 

more available to researchers, opportunities for the exploration of these data have 

manifested themselves.  FOQA and FDR data provide an appropriate source for the 

application of data mining methods.  Much of the early work of examining these large 

flight data was accomplished with the intent of validating, comparing, and identifying the 

most accurate models of the system being evaluated.  As the body of knowledge grew, so 

did the techniques and applications of data mining.  Early examples of research applying 

data mining methods to flight data show that much of the work was done on validating 

complex algorithms, with limited results on the identification of patterns or significant 

relationships hidden in the large data.  The work of Mugtussidis (2000) provides one such 

example of the limitations inherent in early efforts to analyze flight data.  Mugtussidis 

describes the challenges associated with feature selection and proposed a classification 

process using estimated probability density functions.  Limitations in the research 

represent obstacles typical of flight data analysis techniques before the advent and 

deployment of advanced ML algorithms.  The author recommends that as computational 
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capabilities improve, that more optimal search techniques be utilized.  Mugtussidis 

continues to recommend that flights are segmented using cluster analysis allowing 

unusual events to be more accurately discovered.  As the research progressed, more work 

began to evolve into the use of data mining to provide results which could be applied to 

the identification of hazards.  Finally, with the development of data mining techniques, 

the feasibility of building complex predictive models evolved.  Li, Das, Hansman, 

Palacios, and Srivastava (2015) present research concerning cluster-based anomaly 

detection to identify abnormal flight events.  The results were then examined by subject 

matter experts, who then classified the events regarding level of hazard.  Their research 

was enabled using large data gathered from over 26,000 commercial airline flights.  

Clustering techniques were then applied to the data to identify anomalies in the takeoff 

and landing phases of flight.  The research was designed using two experimental 

methods: one to sample 91 flight parameters in the effort to identify abnormal flight 

events, and a second to evaluate three different data clustering algorithms.  Limitations to 

the study include a vague description of what constitutes abnormal flight events, as well 

as those variables of interest in the clustering analysis, and the lack of a clearly defined 

target variable.  It is also unclear what coding was used to build the models used in the 

evaluation of the algorithms.  Additionally, the SMEs used in the evaluation of the 

abnormal flight events do not apply any standard criteria in their analysis.  

Wang, Wu, and Sun (2014) provide a landmark study on the use of Tianjin 

Airlines B737 QAR based flight data research on RE impact factors.  The researchers 

determine that pilot flare technique and weather factors are significantly correlated to RE 

hazards.  Although the research is based on a limited sample size, the findings indicate 
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that reactive modeling can provide important results regarding feature selection.  Nanduri 

and Sherry (2016) build on the research of Wang et al. but limit their study to the use 

simulated FOQA-like flight data to investigate landing excursion hazards into San 

Francisco International Airport.  The researchers use X-Plane simulated flight data to 

construct recurrent NN models using 21 flight variables.  The researchers were able to 

demonstrate the performance of NN models in anomaly detection of FOQA-like data but 

used a very small sample size and applied vague exceedance criteria.  They recommend 

that future research increase the number of flight variables and build models with 

different feature combinations. 

Aslaner, Unal, and Iyigun (2016) present research based on the application of data 

mining methods to FDR data in order to identify safety issues in commercial flight 

operations.  Specifically, cluster analysis techniques were applied to a sample of landing 

phase of flight operations airline data, although the source of the sample and population 

were not identified. Dynamic time warping (DTW) was introduced as a cluster analysis 

technique based on unsupervised learning and was used to examine FDM data and 

unstable approaches were filtered.  A key factor of this research is that DTW was shown 

to adequately classify landings at different airports and runways and that different events 

could be grouped with respect to the similarities.  Another meaningful aspect of the study 

is that the DTW method, which was used to approximate the distances between the 

landing performance variables, was not adversely affected by small variations in the same 

type of data.  Limitations of the study are the relatively small sample size, poorly defined 

population, and lack of generalizability.  Also, the data source was not specifically 

identified, and the phase of flight was poorly defined by reliable criteria.   



42 

 

 

Friso, Richard, Visser, Vincent, and Bruno (2018) build on Li’s research with 

their paper on the use of ML methods to predict abnormal runway occupancy times, 

based on radar data patterns.  Sampling and data sources were gathered using final 

approach radar data and A-SMGCS runway data consisting of 78,321 flights at Paris 

Charles de Gaulle airport and were compared with 500,000 flights at Vienna airport.  

Machine learning was used in feature selection and regression was used to observe the 

important precursors, which were identified from the top 10 features.  The study focused 

on two different time window predictions. The first one made predictions based on 

abnormal arrival runway occupancy time (AROT) and associated precursors.  The second 

one made predictions on arrival sequences for terminal air traffic flow based on a one to 

two-hour window.  The researchers argue that the usefulness of these predictions could 

lead to an improvement in runway safety and throughput.  The significance of the results 

of the research was the demonstration of the use of combined ML techniques to forecast 

arrival runway occupancy time (AROT) per flight.  A limitation of the study was the 

restriction of the scope to arrival runway occupancy data. 

Shi, Guan, Zurada, and Manikas (2017) detail how data mining (DM) methods 

can be utilized in aviation safety management system programs.  Specifically, data-

mining methods were applied to identify risk factors in commercial aviation by sampling 

pilot narratives from the NASA ASRS.  The researchers initially used topical mining 

methods to convert the pilot narratives to model input. ML algorithms were then used to 

incrementally build and assess classification models for risk factor identification.  Three 

different classification algorithms were evaluated.  Results indicated the effectiveness for 

inclusion in an organization’s SMS.  A limitation of the study was the focus was 
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primarily on the justification of the evaluation methods for various algorithms, rather 

than on the identification of aviation safety hazard applications.   

Finally, Maxson (2018) and Truong, Friend, and Chen (2018) apply data mining 

methods in their research on flight delay prediction.  These studies are particularly 

significant regarding the building, evaluation, and comparison of various models with the 

intent of the prediction of flight delays.  Specifically, Truong et al. (2018) used FAA 

Aviation System Performance Matrix (ASPM) data, which were sampled in order to 

apply decision tree and Bayesian inference modelling, in order to predict the probability 

of a flight-delay incidents.  Maxson (2018) focused his analysis on arrival delays based 

on input variables related to weather phenomena.  Although the sampling of Truong et al. 

was limited to on-time data at Newark and Miami International Airport and Maxson 

considered only 10 airports in the NAS, the demonstration of data mining methods in the 

prediction of a target variable was found to be significant.  

Text mining methods.  Matthews et al. (2013) developed research on both topic 

and data mining.  The researchers applied these methods to both pilot narrative safety 

reports as well as flight data.  Significant aspects of the study include the description of 

the Aviation Safety Knowledge Discovery Process (AVSKD).  The context of their study 

demonstrates the use of a structured knowledge discovery process, which harmonizes 

DM methods in order to identify precursors to aviation safety incidents.  Their research 

used data samples based on raw FOQA data, from aircraft operating in the NAS collected 

from takeoff to landing.  The typical flight generated 5000-6000 samples and 350 flight 

parameters.  DM methods include scalable multiple-kernel learning algorithm for 

anomaly detection.  Significant findings of the research include the application and 
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validation of data mining methods to large commercial aviation datasets to detect 

precursors to aviation safety events.  A limitation of the study was the restriction to data 

from one aircraft fleet type, thus limiting the generalizability of the results.  

Christopher, Vivekanandam, Anderson, Markkandeyan, and Sivakumar (2016); 

Koteeswaran, Malarvizhi, Kannan, Sasikala, and Geetha (2017); and Kuhn (2018) present 

the application of text mining techniques to accident data reports.  Arockia et al. (2016) 

developed a classification model for aviation risk mitigation techniques using decision 

tree methods.  While Koteeswaran et al. (2017) also applied several data mining methods 

to accident report narratives, distinct aspects of the research include the investigation of 

correlation-based feature selection (CFS) using an oscillating search technique (OST).  

This technique was used to select attributes that could be important factors in 

contributory accident causal identification.  Both studies utilized feature selection, which 

is normally done by searching attribute subsets and evaluating each one, and decision tree 

and Bayesian networks for classification of aircraft accident factors.  The studies contrast 

in the findings of model accuracy effectiveness.  Christopher et al. (2016) concluded that 

decision tree models performed the best regarding classification accuracy and lower error 

rates in misclassification, while Koteeswaran et al. (2017) determined that cluster 

computing, using the feature selection algorithm, Improved Oscillating Correlation based 

Feature Selection (IOCFS), was superior to decision tree models, in terms of 

classification accuracy.  Limitations to these studies are the reactive nature of hazard 
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identification and the lack of predictive capabilities inherent in their modelling 

techniques.   

Finally, Kuhn (2018) builds on previous research with the use of structural topic 

modeling NASA ASRS data.  A key feature of the research is that although the study 

continues with previous work on the classification of accident causal factors, results also 

revealed the ability to identify and predict relationships in aircraft accident contributory 

factors.  Even though the study was limited to ASRS narratives involving fuel system and 

landing gear anomalies, results also revealed unstable approaches to San Francisco 

International Airport.  The unintended identification of unstable approach instances 

provides an opportune juncture in the body of knowledge for the investigation of flight 

data monitoring (FDM) or FOQA data for the purpose of addressing unstable approach 

occurrence and how to predict these occurrences.  

Data Mining and Machine Learning Techniques 

While data mining is a relatively broad term, a key descriptor includes computer-

driven data analysis techniques and applies artificial intelligence in the exploration of 

large data in order to discover patterns or relationships that might be used in predictive 

modelling.  Large, messy data sources may be “cleaned” and structured in a more feasible 

format for the purposes of applying data mining techniques.  Models can then be 

constructed in order to represent theoretical relationships of interest.  The models can 

subsequently be used as a comparison tool to try and justify evidence for further analysis 

(Dubey, Kamath, & Kanakia, 2016).  

Gera and Goel (2015) assert that data mining is part of a more general process 

based on the discovery of knowledge pertaining to large data.  They further describe the 
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idea that several sources of data can be exploited simultaneously and introduce the 

concept of dynamic and static sources of data.  Dynamic data sets, like those generated 

by FDR data of commercial aircraft operations in the NAS, are particularly important to 

aviation research.  The use of dynamic data could be appropriate in applications with 

continuously changing environmental conditions inherent in the NAS.  

Al Ghoson (2011) compares the strengths and weaknesses of several 

commercially available tools in the application of DM techniques: SAS® Enterprise 

MinerTM, SPSS® ClementineTM, and the IBM DB2® Intelligent MinerTM.  The researchers 

assert that many business application packages favor decision tree and clustering analyses 

in the decision-making process.  Their research criteria included the following in their 

evaluation: a) performance, b) functionality, c) usability, and d) auxiliary task support.  

Based on these criteria, the researcher concludes that SAS® Enterprise MinerTM 

encompasses nearly all aspects of data mining, to include: text mining, simulation, 

predictive modeling, optimization, and experimental designs. 

Bharadwaj et al. (2013) detail a multifaceted process of discovering and 

describing unusual events as Anomaly Detection.  They use the term synonymously with 

unusual occurrences, outliers, and surprises.  The researchers further assert that the 

process encompasses several attributes, including the type of anomaly, the nature of the 

data, and the handling of uncertainty inherent in the system.  Contextual anomalies 

describe abnormal occurrences as defined by guidelines or expectations.  For example, an 

unstable approach is considered an anomaly in the context of this research, as defined by 

any exceedance of limitations presented in FAA AC 120-71A and later AC 91-79A.  

Hence, anomaly detection can be described as occurrences that do not fall into normal 
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regions of expectations or standards.  In terms of complex systems with multiple regions 

of normal behaviors, such as flight operations (takeoff, cruise, descent, and approach and 

landing phases of flight), anomaly detection describes operations that do not fall into 

these regions.  The researchers further assert that abnormal behaviors may appear as 

clusters that are discernible from normal clusters.  Thus, these clusters can become the 

framework which describes clustering algorithms models. 

Das, Mathews, and Lawrence (2011) and Gorinevsky, Mathews and Martin 

(2012) discuss machine learning methods as a basis for addressing data-driven anomaly 

detection problems associated with large data.  Gorinevsky et al. (2012) describe the 

evolution of ML from traditional statistical process control (SPC) to supervised ML 

methods.  Supervised ML methods utilize training data labeling in order to build 

predictive models to detect abnormalities.  Examples of classification and regression 

supervised anomaly detection methods include: (a) decision tree, (b) neural network, (c) 

logistic regression, (d) SVM, (e) random forest, and (f) gradient boosting algorithms. 

Decision tree.  DTs are a flowchart type of decision support tool and have 

become popular in machine learning.  It provides a visual representation in decision 

analysis also used in modeling event outcomes and is commonly used in ML processes to 

display algorithms consisting of conditional control statements (Tufféry, 2011).  Decision 

tree models consist of internal nodes, which represent analysis on model attributes.  

Branches represent the results of the process, with each leaf node representing 

classification labels.  Tufféry (2011) describes advantages of decision tree models as easy 

to understand and analyze, and can be conveniently combined with other analysis 

techniques.  However, disadvantages include being relatively unstable and often 
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inaccurate when compared with other techniques.  Additionally, decision tree models 

tend to over fit and tend to bias favoring attributes with categorical variables.   

Tufféry (2011) describes decision tree as an iterative process that divides a given 

population into segments, based on variables that encompass distinctive qualities within 

the population. The process begins with the formation of the root, or parent, node.  

Subsequent nodes are called child nodes, which are then further segregated into 

intermediate nodes, if applicable. The end cycle consists of terminal nodes, or leaves, 

which, when integrated with previous segments, indicate a branch of the tree. Training 

data are then used to calculate probabilities for each node.  These probabilities are based 

on a node rule, which is established using the selection variable value set. These value 

sets are referred to as targets and a decision refers to the selection of a variable at each 

node.  With business decision making applications, decision trees are typically used for 

the purposes of minimizing loss, maximizing profit, or to reduce classification error 

(Maxson, 2018; Sarma, 2013).  Maxson (2018) provides details on the use of decision 

tree predictive modeling in his study focusing on the prediction of arrival rates at 10 

airports in the NAS. 

Misclassification, lift, and ASE are used to determine tree value.  Ultimately, the 

goal is to minimize cost and maximize profit regarding decisions.  ASE is only 

appropriate in cases with a continuous target variable.  Training, validation, and test 

datasets are partitioned based on the size of the sample.  In cases of relatively small 

sample size, 40/30/30 or 50/25/25 percentage splits are used to train, validate, and test 

data subsets.  The validation dataset is also commonly referred to as the pruning dataset.  

Larger training datasets usually result in consistent parameter estimates.  The training 
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dataset: assists selection based on specific guidelines at a node, conducts probability 

estimates at each node, and determines the decision variable value at the node.  The tree 

is pruned using the validation dataset and the optimal tree generates the highest profit.  

Tree worth is determined by comparing splitting values.  Performance assessment is 

based on the training data set and is used in model comparison (Maxson, 2018; Sarma, 

2013). 

Neural network.  Often referred to as artificial neural networks (NN), they are 

models that process information between multiple layers.  Tufféry (2011) describes the 

broad application of neural networks in the application of clustering, classification, and 

predictive model designs.  The neural network model represents a series of source nodes 

that circuitously transport data to output layers of neurons.  Additionally, intermediate 

layers may be found between the source nodes and output neurons that process data prior 

to the outer layers.  Sarma (2013) asserts that a NN model transforms variables and 

performs model estimation.  NN modeling is based on an iterative process, where the data 

source can be transformed and processed.   

SAS Enterprise Miner has a menu of options which allow for the selection of a 

combination of hidden layer or target layer function, with each generating a new NN 

model (Sarma, 2013).  The AutoNeural node can select activation functions for a variety 

of multilayer networks.  The DM Neural node selects the highest performance rated input 

variables to fit a non-linear solution using R2 assessment of the linear regression on the 

important input factors (Maxson, 2018). 

Regression.  With the examination of a binary target variable, logistic regression 

is recommended by Tufféry (2011) based on several factors.  First, logistic regression can 
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handle dependent variables with two values, without making as restrictive assumptions 

necessary.  Logistic regression has been shown to be highly reliable, with the reliability 

relatively straightforward to monitor using several available statistical indicators.  

Logistic regression is also highly generalizable, widely interpretable, and robust.  Tufféry 

(2011) describes several advantages of logistic regression: appropriate for discrete, 

qualitative, or continuous independent variables; ordinal or nominal dependent variables; 

requires less restrictive assumptions (compared with linear regression) of multinormality 

or homoscedasticity of the independent variables; and can provide very accurate models 

(Tufféry, 2011).  Logistic regression also allows for interactions among independent 

variables.  This is important to the research in that unstable approach criteria involve 

several independent variables.  One of the most significant advantages of logistic 

regression is that it directly models a probability, which is a key point in the research.  

Although logistic regression has some disadvantages, such as the requirement that the 

explanatory variables must be linear independent, and sensitivity to missing values of 

continuous variables, these disadvantages are expected to have little impact to the 

research.  Tufféry (2011) continues to suggest that regression analysis is very useful 

when the collinear relationships could exist among the important predictor variables or 

the observations are exceeded by the selection of variables. 

Logistic regression analysis, or logit regression, consists of a logistic function to 

model a binary dependent target variable.  The binary dependent target variable in the 

study, UARM, has only two possible outcomes, the presence of UARM, or the lack of 

presence of UARM, valued as “0” or “1”.  In the logistic regression model, the logarithm 

of the odds for the presence of UARM, or “1”, is a linear combination of the independent, 
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or predictor variables.  The predictor variables can be either continuous or categorical.  

The logistic function converts the log-odds to probability, with the unit of measurement 

being a logit, or logistical unit.  Logistic regression was binomial in this research, 

meaning the target variable has only two possible outcomes, hence the target variable is a 

binary categorical variable.  Binary logistic regression was used to predict the odds of 

UARM occurring based on the values of the independent predictor variables.  Because 

logistic regression is used to predict a categorical target variable, rather than a continuous 

target variable, as in linear regression, the assumptions of linear regression may be 

discarded, particularly normal distribution of residuals, are violated (Tufféry, 2011).  

Tufféry (2011) continues to assert that logistic regression is analogous to linear 

regression, but differs in the relationship between the independent and dependent 

variables.  Significant differences include the prediction of values are probabilities, “0” or 

“1”, rather than the values of the outcomes themselves.  Subsequent descriptions of 

model fitting and regression coefficient estimating were provided in detail, as well as an 

examination of the contribution of individual predictors of UARM.  The odds ratio was 

used to examine predictor effects on the exponential function of the regression coefficient 

(Tufféry, 2011).  Several of the most notable tests of significance regarding important 

predictor variables are the likelihood ratio test and the Wald statistic (Tufféry, 2011). 

Truong, Friend, and Chen (2018) support logistic regression methods with a 

contrasting description of multiple logistic regression.  Maxson (2018) provides evidence 

supporting techniques used by the team, even though his research uses linear regression 

modeling with a continuous target variable.  The researchers assert that multiple logistic 

regression is commonly used in predictive modeling and is an appropriate method to use 
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to predict the value of a dependent variable based on multiple independent (predictor) 

variables.  However, linear regression necessitates that no missing values be present, as 

well as the very restrictive assumptions on normality, linearity, homoscedasticity, and 

non-multicollinearity.  Although Tufféry (2011) continues to assert that while logistic 

regression is a form of multiple regression, an important distinction contrasting with the 

work of Maxson (2018) is that it has an outcome variable that is a categorical variable 

and predictor variables which are continuous or ordinal.  Binary variables are present if 

only two categorical outcomes can result; with more than two possibilities, the regression 

is considered multi-nominal, or polychromous.  The linearity assumptions are implicitly 

violated when a categorical dependent variable is chosen.  However, this issue can be 

overcome by transforming the data logarithmically.  In other words, the binary dependent 

categorical variable is transformed into a continuous curve.  While different approaches 

can be taken, generally it is assumed that the dependent variable is based on probabilistic 

outcomes that vary from zero to one.  In a binary logistic regression, if the outcome 

probability is close to zero, the determination is that outcome “Y” did not occur, whereas 

if the outcome probability is close to one, the outcome “Y” did occur.   

Sarma (2013) reports the SAS® Enterprise MinerTM software defaults to a logistic 

regression if the target variable is binary, ordinal, or nominal.  If the target variable is 

binary, the regression defaults to logit link; if there are more than two categorical 

outcomes for an ordinal target variable a cumulative logits link is used, if there are more 

than two categorical outcomes for a nominal target variable a generalized logits link is 

employed.  These include: (a) Akaike Information Criterion (AIC), (b) Schwarz Bayesian 

Criterion (SBC), (c) Validation Error, (d) Validation Misclassification, (e) Cross 
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Validation Error, (f) Cross Validation Misclassification, (g) Validation Profit/Loss, (h) 

Profit/Loss, (i) Cross Validation Profit/Loss, or (j) no classification criterion. 

Support vector machine (SVM).  This is a machine learning algorithm technique 

form of supervised learning.  SVMs can be used in data analysis for classification and 

regression.  A SVM model is built using a training algorithm involving an example 

training set of data.  The data is partitioned into two categories, and the SVM algorithm 

can build a model that assigns data into one of the two categories.  SVM models can be 

used as both non-probabilistic binary linear classifiers, as well as with probabilistic 

classifications.  A SVM model provides a visual map of data points in space, depicted so 

that the data points representing the separate categories indicate a clear gap, as wide as 

possible.  The data is then mapped into the model so that it can be predicted to fall into 

one of the two categories.  SVMs can be used for both linear and non-linear 

classification.  A kernel trick is used in non-linear classification SVMs, in order to depict 

the data into multi-dimensional feature (Chidambaram & Srinivasagan, 2018). 

Oehling and Barry (2019) present the use of ML techniques to detect unknown 

occurrences in flight data, generated by approximately three hundred aircraft, from six 

different Airbus A320 fleets and sub-fleets, for over 1000 flights per day, from March 

2013 to March 2016.  The researchers introduce methods enhancing the safety knowledge 

discovery process.  They continue to describe ML in terms of algorithms which learn 

from the data.  The researchers assert that effective uses have been demonstrated with 

software which builds models, based on input data, rather than a predefined model which 

was encoded in the software during algorithm development.  The study divides ML 

subcategories into both supervised and unsupervised learning.  The contrasting categories 
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are distinct in that supervised learning is based on previous knowledge of the solution.  

Unsupervised learning does not possess pre-knowledge but is commonly used to structure 

large data in clusters, or outliers.  Other examples of unsupervised learning include: (a) 

outlier detection, (b) extreme value analysis, (c) probabilistic and statistical model-based 

approaches, (d) proximity-based approaches, (e) angle-based approaches, and (f) artificial 

neural network modeling.  Specific goals of their ML methods addressed the following 

requirements: 

• Detect unknown occurrences: The model should not rely on pre-determined 

criteria but use the entire data to find safety-related events.  Contrasting 

exceedance monitoring systems, the goal is to detect previously unknown 

false negatives. 

• Handle large data: The model should be able to process millions of flights and 

provide safety departments results within two to three days. 

• Handle diverse data: The model should not be restricted to a limit on aircraft 

type or airports. 

• Produce useful results: The model should have significant practical and 

theoretical implications.  (Oehling and Barry, 2019, p. 90) 

Lauer and Bloch (2008) assert that a key element in the incorporation SVMs as a 

state-of-the-art performance application regards two types of prior knowledge: class-

variance and knowledge of the data.  Class-variance applies to transformations, 

permutations and in domains of input space, contrasting with knowledge of unlabeled 

data, imbalances in the training set, or the quality of the data.  The researchers continue to 

describe a recent method, which was developed for support vector regression, and 
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considers prior knowledge on arbitrary regions of the input space.  Significant 

contributions to the literature include the importance of prior knowledge in ML 

techniques implies that to gain improvements in model performance, some prior 

knowledge about the research problem is necessary.  Specifically, Lauer and Bloch 

(2007) present three methods for incorporating prior knowledge: 

• Sample methods: incorporate prior knowledge by either generating new data 

or modifying existing data accountability; 

• Kernel methods: incorporate prior knowledge in the kernel function either by 

creating a new kernel or selecting the most appropriate one; 

• Optimization methods: incorporate prior knowledge in the problem formation 

either with problem constraints or by defining a new formulation based 

intrinsically on the prior knowledge.  (p. 1584) 

Biswas, Mack, Mylaraswamy, and Bharadwaj (2013) describe machine learning 

approaches as a basis for addressing data-driven anomaly detection problems.  The 

researchers assert that supervised and unsupervised machine learning methods can be 

effective to detect anomalies in nominal situations.  Decision tree classifiers, neural 

network, regression, SVM, random forest, and gradient boosting are presented as 

examples of both types of anomaly detection methods.  The researchers present a 

contrasting anomaly detection algorithm, which uses a semi-supervisory learning 

approach to explore fleet-wide aircraft flight data segments or phases in order to discover 

deviations from a nominal model of the data.  The researchers continue to assert that 

human experts assist in the semi-supervised modeling process because of their 



56 

 

 

effectiveness in preventing classifications errors based on differentiating criteria between 

nominal and abnormal.   

Das et al. (2010, 2011) identify one-class SVM as a popular semi-supervised 

anomaly detection technique.  The researchers describe the one-class SVM as an 

extension of SVM applications, which optimizes the classifier for a single class label.  

This optimization performs data segregation based on boundary criteria, based on the 

training data, and can suffer from limited information for the SME.  Another difficulty 

described by the researchers concerns noisy training data creating a poor decision 

boundary in the classification process, thus introducing classification error in the 

modeling process.  One mitigation strategy is for the SME to clearly define segregation 

criteria (Biswas et al., 2013). 

A One-Class SVM classifier can be constructed from a Multiple Kernel Anomaly 

Detection (MKAD), semi-supervised method for anomaly detection.  The algorithm 

processes the flight data into symbolic feature sequences, so that measures can be applied 

to comparing the similarity between samples.  Das et al. (2010, 2011) describe this 

transformation as a significant challenge in the knowledge discovery process.  The 

MKAD approach has been proven effective to the application of anomaly detection in 

FOQA data to a fleet of aircraft.  The assumption that SVM is constructed from nominal 

data and used to discriminate and segregate non-nominal data.  The researchers continue 

to show that SVM modeling has been effective in anomaly detection of flight data, with 

examples including high energy approaches, pilot responses to external environmental 

conditions, and high energy, low altitude flight conditions. 
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Mendes (2012) and Smart (2012) provide examples of supervised learning ML 

techniques using SVM to investigate 629 automatic landings and 1518 flights into one 

airport, respectively.  Their research indicates that anomaly detection using ML 

techniques could be more efficient and effective when compared to conventional FDM 

methods of exceedance algorithm analysis.  Ju and Tian (2012) discuss in more detail 

how the introduction of knowledge-based SVM via nearest point can incorporate prior 

knowledge in support vector machines.  They assert that SVMs can be highly effective in 

the data mining process by constructing hyperplanes with a large separation margin, and 

hence, lower generalization error of the classification.  The researchers demonstrate how 

effective measures can be used with prior knowledge by transforming boundary points in 

order to compute the shortest distances between the original training data and the 

knowledge data sets. 

Hu, Zhou, Xie, and Chang (2016) establish a model to predict the occurrence of 

hard landing flight safety events.  The researchers based their study of the use of QAR-

collected flight data and determined that nine aircraft variables were relevant in landing 

phase. The featured variables used in the study were (a) radio altimeter height AGL, (b) 

aircraft pitch angle, (c) aircraft pitch angle rate of change, (d) groundspeed, (e) 

longitudinal distance to touchdown, (f) elevator flight control surface displacement, and 

(g) vertical acceleration.  The team selected the flight variable radio altimeter height AGL 

to partition the flight data, and vertical speed was selected as the output variable.  Thus, 

vertical acceleration was determined to be the target variable, or the predictive target, and 

the other variables were considered input data for the SVM model.  Factor analysis was 

used to select relevant input variables to build the predictive model.  A SVM predictive 
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model was then constructed to predict the occurrence of hard landings.  Important results 

of the study include the confirmation that increased efficiency and accuracy of the 

predictive model, based on SVM techniques, can be provided by solving feature selection 

and parameter optimization issues.  The researchers assert that feature selection could be 

enhanced by recursive feature elimination.  Additionally, results of the study indicate that 

parameter optimization was solved in practice by using the application of a grid-search 

algorithm.  This grid-search algorithm was shown to select the model parameters, which 

subsequently set the range for higher accuracy.  The researchers conclude that SVM 

prediction accuracy improvements could be demonstrated through optimized parameters, 

thus improving the prediction rate of hard landings. 

Ju and Tian (2012) introduce knowledge-based SVM via nearest points 

(NPKBSVM), to address the context of prior knowledge in SVMs.  Their research 

indicates that SVMs can play a significant role in data mining methods.  They continue to 

assert that the construction of hyperplanes can be used for classification and regression, 

among other tasks.  Their research describes that, regarding classification problems, 

increased separation can be accomplished by the hyperplane, which lowers the 

generalization error of the classifier by increasing the margins.  Concurrently, they build 

on the work of Lauer and Bloch (2008) with the introduction of the kernel function, 

which addresses non-linearity.  They also indicate that several methods of SVMs will 

continue to emerge because of demands, which will allow SVMs to solve problems 

efficiently and effectively. 

Chidambaram and Srinivasagan (2018), Ju and Tian (2012), and Lauer and Bloch 

(2008) agree that prior knowledge and nonlinear sets can be integrated into SVMs as 
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linear constraints.  The researchers also claim that this can lead to optimization 

challenges that necessitate the use of sophisticated convex optimization tools.  

Incorporating the use of prior knowledge into the computation process of shortest 

distance as measured from difference in the training data points and the knowledge sets 

produces an amended set of training data.  The researchers conclude that current SVM 

tools can be used to achieve significantly improved optimization levels using prior 

knowledge advantages. 

Lauer and Bloch (2008) summarize how the integration of prior knowledge into 

SVMs can be crucial in order to enhance the performance of SVMs in many applications.  

The researchers provide a review of studies that utilizes the two general types of prior 

knowledge into classification tasks: class-invariance and knowledge on the data. The 

former describes transformation invariances in domains of input space, and the latter 

contains knowledge on the quality of the data or accuracy issues in the training data set. 

Lauer and Bloch (2008) review the uses of prior knowledge with a brief description:   

Prior knowledge refers to all information about the problem available in addition 

to the training data.  Several classifiers incorporate the smoothness assumption 

that a test pattern similar to one of the training samples tends to be assigned to the 

same class.   Also, choosing the soft-margin version of SVMs can be seen as a use 

of prior knowledge on the non-divisibility of the data or the presence of outliers 

and noise in the training set. However, in both cases, these assumptions are 

intrinsically made by the SV learning and are thus excluded from the definition of 

prior knowledge. In machine learning, the importance of prior knowledge can be 

seen from the no free lunch theorem, which states that all the algorithms perform 
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the same when averaged over the different problems.  Thus, it implies that to gain 

in performance one must use a specialized algorithm that includes some prior 

knowledge about the problem at hand.  (p. 1,581) 

Key contributions of Lauer and Bloch (2008) to the literature include their 

conclusions that the inclusion of prior knowledge via SME input expert knowledge can 

improve future SVM model performance.  The researchers go on to assert that this in turn 

could also improve classification performance, thus enhanced practical implications.  

They recommend continued research in order to explore other forms of prior knowledge, 

together with optimized algorithms for their implementations.  The researchers also 

describe how the combination of different types of knowledge might be explored for 

practical applications. 

Finally, Mendes (2012) builds on the research regarding SVM methods with his 

study on anomaly detection using ML classifiers exploring flight data.  The researcher 

used SVM techniques to investigate automatic landings in A320 aircraft over a period of 

two months, exploring 359 flight events.  Specifically, the researcher investigated how 

both classification models can predict both normal and abnormal flight characteristics of 

an aircraft autoland system as determined through the analysis of flight data.  The 

research uses exceedance-based criteria set by the aircraft manufacturer then explores the 

use of algorithms to detect atypical or outlier values.  The study details how this approach 

allows the detection of those situations in an unsupervised learning environment, thus 

increasing efficiency.  Important results of the study include the finding that principal 

component analysis (PCA) improved the correlation between dimensions. A linear 

relationship between the features was enhanced through the reduction of variance, thus 
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leading to an increased anomaly detection rate.  The researcher also recommended that 

future research be conducted into the cases that PCA detected, in addition to the detected 

SVM cases.  The researcher concluded that PCA and SVM, when used in combination, 

provided an optimized solution regarding the final case labels. Finally, the study indicates 

that a collaboration of these methods allows robust detection improvement. 

Random forest.  Sometimes referred to as random decision forests, RFs are 

another example of machine learning techniques using ensemble learning methods for 

regression and classification.  They operate by building numerous decision trees in the 

data training phase of the AVSKD data processing model.  Advantages of RFs include 

the ability to mitigate the tendency of decision trees of overfitting their training data set.  

Breiman (2001) describes the construction of numerous, unrelated decision trees using 

the Classification and Regression Tree (CART) model.  CART was developed by 

Breiman with trees for both classification and regression purposes.  The basic premise of 

CART is that the product of the process is the determination of where to split the trees, 

using ensemble methods to accomplish the construction of multiple trees.  Breiman 

introduces RFs as a classifier focusing on bootstrap aggregating, which constructs the 

trees by iteratively sampling the training data set, and eventually forming a consensus 

predictive value Breiman (1999).  Breiman asserts that one of the advantages of this 

bootstrapping technique is better model performance, achieved by decreasing model 

variance, while not allowing an increase in the bias.  Breiman continues to describe 

another advantage of bootstrapping as a way of addressing correlation issues with similar 

trees, achieved by using sampling strategies from different training sets (Breiman, 2001).  

RFs are distinguishable from bagging in that RFs create a random subset during feature 
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selection, thus identifying strong features regarding prediction of the target variable 

indicating strength of correlation among predictor and target variables.   

Mathews et al. (2013) detail several challenges in the AVSKD data processing 

model, particularly those challenges dealing with missing values.  They provide research 

indicating that missing values are often a significant factor in the examination of FDM 

data.  Hapfelmeier and Ulm (2014) provide research on mitigation strategies when 

considering missing data in RF model development.  The researchers detail variable 

selection strategies when considering missing values.  They suggest that RFs could be 

utilized in the variable selection process to enhance data analysis and predictive accuracy.  

The researchers continue to suggest that several solution strategies could be used to 

address missing values: multiple imputation, case analysis, and a significance metric.  

Results of their study indicate that RFs achieve the best results with a self-contained 

metric in selecting relevant variables regarding the predictive model construction.  The 

researchers conclude that when data contains missing predictor values, measures like 

multiple imputation or self-contained metrics could be used.  The researchers recommend 

that when using RF modeling with missing values, self-contained metrics can be used 

successfully to select variables which are of relevance for prediction. 

Paul and Dupont (2015) build on the work on Breiman (1999, 2001) with their 

study on statistically significant feature selection problems.  The team presents the results 

of experiments using RFs to demonstrate how these modelling techniques can address 

problems associated with feature selection of predictor variables.  The researchers assert 

that RFs can be used to analyze embedded variables selected in the feature selection 

process.  They propose a statistical process in order to measure variable importance 
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regarding significance in the interaction with other variables in RFs.  Results of the study 

demonstrate the correct identification of relevant variables, using Breiman’s index of 

importance (Breiman, 2001). Significant results of the study include the ability to 

calculate p-values during the iterative RF model building process.  In this way, the 

researchers detail how to discover significant predictor values while minimizing false 

identification.  The researchers conclude that the RF predictive modelling processes 

consistently perform better than other modelling techniques, without sacrificing 

performance. 

Genuer, Poggi, Tuleau-Malot, and Villa-Vialaneix (2017) and Singh, Gupta, 

Sevakula, and Verma (2016) conducted research comparing RFs with other ML 

algorithms, as applied to very large data.  Genuer et al (2017) investigated and compared 

the performance of several ensemble ML techniques, such as linear regression models, 

clustering methods and bootstrapping schemes.  The researchers build upon theories 

presented by Breiman (2001), who introduced RFs as decision trees integrated with 

aggregation and bootstrap ideas, which are effective regarding the consideration of 

regression problems and two-class as well as multi-class classification analysis.  Genuer 

et al. (2017) also compare and contrast several variants of RF modeling algorithms on 

datasets consisting of 120 million observations.  Variations in the modeling include 

parallel implementation, several different forms of bootstrapping, and various 

subsampling techniques.  Additionally, Genuer et al. (2017) included a sample 

experiment detailing the application to real-world data related to flight delays.  These 

data were used mainly for descriptive purposes rather than aviation research.  Singh et al. 

(2016) contrast this approach, while focusing on Gaussian mixture model (GMM), 
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logistic regression, and RF classifiers used in mining large data. The researchers analyzed 

these algorithms while comparing run time, test accuracy, and number of mappers on 

large data sets.  The study focused on three big data sets comprised of over two million 

sets of data.  Results of the study detail RFs perform best in terms of accuracy.  Although 

Genuer et al. (2017) also assert that RFs perform best when trees are diversified, the 

researchers recommend that improvement in RF performance should be attained when 

improvements regarding diversity are defined in initial RF iterations. 

Lee, Park, and Jung (2014) describe aviation research using RFs and similarity 

measures to build predictive models that determine aircraft system fault detection.  The 

researchers conducted research on unmanned aircraft vehicle (UAV) fault detection 

systems using a fault detection algorithm they developed.  Fault decision was conducted 

with the calculation of prioritized similarity measure.  The impact of predictor variables 

was determined and weighted using RFs.  The researchers identified 89 data variables in 

feature selection, 39 being variables associated with normal operations, and 51 variables 

detailing non-normal flight conditions.  Prior knowledge and familiarity with the data 

were used as factors in the determination of impact variables.  The fault detection models 

were built using both lateral and longitudinal flight control surface related variables.  

Results achieved with the performance of RFs indicate the impact of each feature or 

parameter.  Several flight tests were conducted in order to validate the fault detection 

models.  Significant results of the study include the demonstration of the feasibility of 

fault detection algorithm using RFs.  Additionally, high fault detection rates were 

observed, as well as the validation of similarity measure decision results.  The researchers 
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note that the flight control system of the UAV could be enhanced without the requirement 

of additional sensors, thus saving aircraft weight and complexity. 

Gregorutti, Michel, and Saint-Pierre (2015) propose a new approach to the use of 

RFs, with emphasis on multiple Functional Data Analysis (FDA) and the grouped 

variable importance measure, used in their study to predict aircraft landing distance.  The 

researchers assert that several groupings of basis coefficients could be utilized 

considering specific functional disposition.  Unique to the research model is the approach 

to the selection RF algorithm, when considering the grouped variable importance.  The 

computational requirements of the RF algorithm were decreased by regrouping the 

coefficients, which contrasts to the iterative elimination of grouping coefficients usually 

demonstrated in RF modeling by eliminating one coefficient in each iteration.  The team 

also describe how simulation studies demonstrate scale of the grouped importance 

regarding measurement for FDA.  The research team then applied the resulting RF 

algorithm in the feature selection of important factors in long landings to explore and 

predict aircraft landing distances.  The team consulted with several SMEs, who 

determined that 23 variables were relevant to landing distance.  1868 flights were used, 

operating at one airport by one airline, to collect data.  RFs as well as a permutation-

based importance measures were used for variable groupings. The researchers also 

compared and assessed models using bagging, neural network, and SVM ML techniques.  

Key contributions of the study include the unique application the team used to select 

operational variables using the measure of grouped variable importance and a predictive 

modeling approach.  Additionally, the RFs were adapted in a backward context regarding 

iterative elimination.  This variable selection technique was also adapted to the unique 
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measure of grouped importance in order to predict the target variable, landing distance.  

The researchers conclude that future studies could incorporate their group variable 

importance projection technique into flight data analysis to assist airline flight training 

managers to develop SOPs as well as enhance pilot training. 

Blair, Lee, and Davies (2017) use RFs to build models used by aircraft to detect 

real time inflight aircraft damage.  The researchers developed techniques for detection 

using real-time classification of flight trajectories distinguishing normal from abnormal 

aircraft.  The team demonstrated an efficient computational approach using RFs, with the 

key factor being the ability to provide accuracy necessary for fault detection and 

classification.  The methods were tested using a full motion 757 flight simulator at the 

NASA ARC research center.  The team used RFs in their approach to detect fault in six 

flight scenarios in the simulator.  Principal Component Analysis (PCA) was used in the 

classification study as a dimension reduction technique.  The chosen methodology 

integrated several statistical techniques: principal component analysis, random forest, and 

cross-validation, which the team asserts produced a reliable and fast classifier.  The team 

then used sliding window approach, which the team describes as a sequential approach to 

the problem, while concurrently learning temporal and probability thresholds, by training 

a validation data set.  The team claims their methods resulted in a 98.7% predictive 

accuracy rate, and also provided fault detection at half-second time intervals.  This key 

result from the study indicates that faster fault detection times could be achieved with 
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increased computational capabilities, which would ultimately assist the pilot in real-time 

SA enhancement. 

Tong, Yin, Wang, and Zheng (2018) analyze and process QAR using RFs to 

predict the landing speed of commercial aircraft.  The researchers collected data from the 

QAR devices onboard Airbus 300 aircraft from a single operator based on 2000 flight 

segments.  The team asserts that missing data was a significant challenge in the data 

processing task.  In order to address this challenge, the researchers resampled the data a 

one frame per second.  The team then used RFs to sort the 69 candidate features in order 

of importance and selected the 20 most relevant features regarding landing speed.  The 

RF process resulted in 250 trees determining the top 20 features.  Top features included 

engine speed (thrust), angle of attack, and descent rate.  The research team asserts that 

their most significant result was the ability to predict landing speed, which they describe 

as a causal factor in landing accidents.  Additionally, the team describes how RFs were 

able to extract the most important features.  The team recommends that AI be 

incorporated into future studies in order to process the sensor data. 

Lv, Yu, and Zhu (2018) provide research into hazards associated with RE based 

on excessive landing distance.  The researchers used SVM, RF, and logistic modeling of 

QAR data from 6,000 Chinese Airlines A320 flights.  The researchers present results that 

indicate excessively long landings are significantly correlated with pilot flare technique 

and runway distance.  Limitations in the study include lack of standards applied in the 
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feature selection phase of the knowledge discovery process as well as the lack of SME 

involvement in the selection of impact variables. 

Finally, Kumar and Ghosh (2019) detail the use of CART and RFs in their 

research into predicting unsteady aerodynamics model using quasi-stall flight test data.  

The researchers assert that RFs were more effective regarding scalability that NN models. 

The team developed RFs model specifically to model lift, drag, and pitching moment 

aerodynamic models.  The team chose to use non-parametric models using the flight data.  

They describe that non-parametric models do not include physical parameters or 

parametric equations like parametric models do.  The team present CART and RF data-

driven modeling approaches by understanding the gathered flight data and using this prior 

knowledge in feature selection.  The researchers agree that advantages of RFs include 

avoiding overfitting problems often encountered by decision tree, diversity regarding 

both classification and regression, and important predictor identification based on 

training data.  Results compared favorably with maximum likelihood estimation (MLE) 

predictions.  The team declare that the key conclusion in the study was that RFs are 

superior to CART, with each method more desirable alternative to the parametric 

approach inherent in MLE.   The team states that RFs could be scaled and applied to 

many other applications of nonlinear modeling. 

Gradient boost machine.  One of several recently developed machine learning 

algorithm-based techniques, gradient boost machines (GBMs) are used mainly for 

classification and regression.  The product of this technique is prediction models formed 

by integrating weaker prediction models, usually decision tree.  GBMs typically build the 

model in an iterative process.  Additionally, GBMs are able to generalize the integration 
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of the weaker individual models, which can produce an optimized differential loss 

function (Breiman, 1997).  Breiman (1997) and Freidman (2001) developed early 

gradient boosting optimization algorithms, mainly based on cost analysis.  Friedman 

(2001) continued research using optimization algorithms, conducting significant research 

on algorithms expressly for work on regression using gradient boosting.  Although his 

research initially observed boosting algorithms that optimized cost functions over 

function space, this functional perspective of gradient boosting preceded development of 

boosting algorithms in many areas of ML, including aviation research exceeding 

classification and regression.  GBMs integrate multiple weak models into one strong 

model, with the purpose of predicting a target variable probability using supervised 

learning.  A training data set is typically used to teach a model to predict the target 

variable in an iterative process that can minimize the mean squared error, for example, in 

a regression problem.  In effect, the iterative process continues to improve as the error is 

minimized in each iteration and produces a residual, which is a negative gradient.  In 

effect, GBMs incorporate the negative residual into the next iteration.  Similar to other 

supervised learning problems, GBMs produce an output variable and a vector of input 

variables.  The vector, or joint probability distribution, uses the training data set to 

develop a function in order to minimize loss.  The work of Breiman and Friedman has 

provided aviation researchers with foundational tools to investigate and explore problems 

associated with predictive model construction using GBMs.  A brief description of extant 

literature pertaining to GBM techniques, as applied to aviation, is provided.  To date, the 
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general area of research has been accomplished concerning cost savings and 

optimization, with some work done on flight path prediction.  

Alligier and Gianazza (2018) provide aviation research using GBMs to build 

predictive models focusing on ground-based aircraft trajectory.  Their research models 

the forces imposed on an aircraft to predict future points of the trajectory of the flight 

path.  They assert that previous knowledge was necessary regarding aircraft mass, thrust, 

and speed.  The researchers applied ML methods in order build models to predict mass 

and speed as constructs, thus improving the ability to predict their target variable, aircraft 

trajectory.  The data used in the research was provided by the Eurocontrol Base of 

Aircraft Data (BADA), which was utilized to provide default values for the model 

parameters.  The data were acquired on ADS-B from The OpenSky Network in 2017, 

using the climbing segments of 11 types of aircraft, resulting in millions of flights 

worldwide, operating from 1520 airports.  The ML techniques were used to predict the 

most significant factors necessary to calculate the predicted trajectory. The researchers 

used GBMs to build predictive models for each specific aircraft type.  As mentioned, 

previous knowledge was then required to construct a training data set, with known 

operational factors.  The training set was constructed by separating, or partitioning, the 

original large set of data.  The researchers claim that they achieved two of their stated 

goals: a non-optimistically biased result, and the demonstration of the use of explanatory, 

real-time variables in a performance assessment.  Significant contributions to the body of 

knowledge were achieved regarding bias: the climbing segments were not limited by 

altitude restrictions, and very large data were included in the study, using millions of 

climbing segments of the 11 most popular aircraft types in commercial aviation.  Thus, 
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the researchers demonstrated that ML techniques can be effectively scaled to very large 

data.  The researchers detail that further significant practical implications apply to air 

traffic control, which could benefit from the results of the study, regarding the ability to 

predict climb trajectory and vertical separation.  Additionally, the ability to predict climb 

trajectory real-time could enhance flight path track error and improve top of climb 

prediction.   

Research by Thompson (2017) using FAA Comprehensive Electronic Data 

Analysis and Reporting (CEDAR) data provides an example of the use of ADS-B data in 

modeling unstable approaches.  Thompson (2017) asserts that ADS-B data could be 

augmented with weather observation data for development of real-time stable approach 

models.  The researcher asserts that these real-time models could be used by air traffic 

control to calculate the probability of occurrence of an unstable approach and rejected 

landing.  Thompson (2017) also indicates that the capability for ATC to predict an 

unstable approach and rejected landing could improve safety by decreasing interference 

with air traffic flow in normal operations.  The researchers concur that the ability to 

predict the occurrence of rejected landings improves air traffic safety.  Alligier and 

Gianazza (2018) and Thompson (2017) agree that future work should include analysis of 

specific airport operations, at which error in prediction was higher, in order to help 

improve unstable approach model accuracy. 

Achenbach and Spinler (2018) introduce ensemble modeling, combining elements 

of linear regression and GBM algorithms to generate predictive models.  The researchers 

provide airline arrival time and cost index optimization predictions on European airspace 

short haul flights.  Cost index (CI) is an airline metric used to predict fuel cost and flight 
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time of a flight segment.  The researchers describe the cost savings airlines can attain 

through accurate flight planning based on CI predictive accuracy.  The researchers assert 

that increased efforts by aviation researchers to minimize costs associated with flight 

delays have faced challenges due to inability to accurately combine arrival time 

predictions with CI models.  Contrasting previous studies, the researchers chose to use a 

ML ensemble to predict arrival time, but rather than predicting arrival time once the 

aircraft was airborne, they chose to use gate departure to predict arrival time.  Achenbach 

and Spinler (2018) continue to build on the work of Breiman (1997) and Friedman (2001) 

using GBMs based on European flight data from 2015 and 2016, from over 200 European 

airports.  The researchers identified important predictor variables regarding weather data, 

airport congestion, flight levels, and other basic flight planning data.  The predictive 

modeling then focused on arrival time with various CI values.  Significant contributions 

of their study include the first attempt to combine dynamic CI values with arrival time 

predictions.  This combination produced greatly improved ability to airline managers to 

minimize total cost of a flight segment.  Additionally, the study demonstrated the 

increase in accuracy by using ensemble GBMs.  These key contributions provide 

evidence that ensemble GBMs can improve aircraft arrival time predictions while 

considering both linear and non-linear relationships of important impact variables, along 

with the interdependence of these variables.  Limitations to the study are that it focused 

on one airline.  The researchers recommend future research include several airlines, in 

order to apply their model to airlines of different sizes and city pairs.  Additionally, CI 

was calculated based on cost per unit of time, when in reality, often cost of time cannot 

be determined per minute for all variables.  Lack of enroute weather conditions, including 
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wind effects, was a delimitation of the study, and could significantly affect results.  

Regarding future research, they recommend that extensions of their work include 

improved cost estimates for not only delays but also cost per unit time be further 

investigated.  The researchers assert that ML techniques should be incorporated with 

predictive modeling in future studies with the ability to combine cost blocks in order to 

improve CI optimization. 

Kang and Hansen (2018) build on the work of Achenbach and Spinler (2018) with 

their research on the application of GBMs to improve commercial airline fuel burn 

prediction.  The researchers built predictive models using prediction intervals (PIs) to 

mitigate the uncertainty of model predictions.  The researchers determined that annual 

cost savings to airlines could approximate $60 million annually, just for one domestic US 

airline.  Additional benefits include the reduction by 428 million kg of CO2 annually per 

airline.  Data for the study were collected from three sources: flight level performance 

data from the FAA Aviation System Performance Metrics (APSM) database, the terminal 

area forecast (TAF) weather information from the National Oceanic and Atmospheric 

Administration (NOAA) database and flight and fuel statistics from one U.S. airline.  The 

researchers included all available predictive variables to build the models.  The target 

variable for their study was actual fuel burn for a flight segment.  The FAA ASPM 

database was used to gather historical data for the largest 77 US airports, then descriptive 

statistics were generated to create flight time data between different city pairs.  The 

researchers then describe the various advantages that advanced computing power and 

new ML techniques have allowed.  They describe GBMs with the ability to iteratively 

improve predictive accuracy by starting with a weak learner base, then continuously 
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adding them together.  The researchers contrast GBM ML techniques with other 

ensemble learning methods such as Bagging, Random Forest, and Stacking.  Similar to 

Achenbach and Spinler (2018), the researchers determined that a significant limitation to 

their study was the lack of real-time enroute weather data.  They assert that current data 

made available by the airlines is based on the flight planning system (FPS), which is 

subject to prediction errors, which could significantly affect fuel burn values.  The 

researchers recommend, in future studies, the investigation of predictive model 

construction, focusing on airline dispatcher decision making.  The researchers detail the 

affects that human decision-making processes could have on the fuel planning process, 

and raise the question of HIP and ADM regarding predictive model applications. 

Finally, Gallego, Gómez, Sáez, Orenga, and Valdés (2018) produced research 

with the objective of investigating the effects of operational input variables on the 

vertical flight path trajectory prediction.  Additionally, the research team desired to 

determine what important input variables should be included in the feature selection 

segment of the knowledge discovery process. The study was based on the use of a data 

warehouse (DWH) program to construct a comprehensive information management layer.  

The aircraft trajectory flow models were based on these data, applied to the Barcelona 

International Airport.  ML techniques were used to determine the flow patterns within the 

DWH.  Contrasting other similar studies, the researchers chose to use a set of multilevel 

linear models (MLMs) which were adopted to investigate vertical aircraft flight path 

trajectories on descent into the airport.  Key discriminators included operational vertical 

procedures, airline specific procedures, and unique flow patterns to the airport.  The 

MLMs performed linear regression tasks, which included training the independent 
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variables for different groups.  The target variable was the rate of descent from the top of 

descent (TOD) to Flight Level 250.  The researchers indicate that results show a 

correlation between rate of descent and the location of the TOD. The researchers continue 

to conclude that based on the MLM results, key input variables were determined to be the 

position of TOD and flow factor, regarding flight path trajectory prediction.  

Additionally, specific airline operational procedures (SOPs) were not found to be 

significant factors in the prediction of flight path trajectory.  The researchers recommend 

that future research investigate different airspace sectors for flow similarities.  The 

researchers also agree with Kang and Hansen (2018) and Achenbach and Spinler (2018) 

that future research should incorporate weather-related data for improving accuracy of 

the predictive models.  Finally, the researchers recommend that GBMs, as well as other 

data-driven approaches, should be explored in order to more accurately predict aircraft 

flight path trajectory. 

Table 1 presents a summary of comparative aspects of predictive modeling 

techniques. 
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Table 1 

Comparison of Prediction Methods 

Prediction 
Method 

Number of 
Predictors 

Interrelationshi
ps among 
Predictors 

Detection of 
Hidden 

Patterns in 
Large Data 

multiple 
regression limited continuous no 

logistic 
regression limited binary or 

nominal no 

simultaneous 
regression limited continuous no 

Decision tree many 
continuous 
binary 
nominal 

yes 

conventional 
data mining many 

continuous 
binary 
nominal 

yes 

data mining 
using Bayesian 
inference 

many 
continuous 
binary 
nominal 

yes 

support vector 
machine many 

continuous 
binary 
nominal 

yes 

neural network many 
continuous 
binary 
nominal 

yes 

gradient boost 
model many 

continuous 
binary 
nominal 

yes 

random forest many 
continuous 
binary 
nominal 

yes 

Adapted from “Applications of Business Analytics in Predicting Flight On-Time 
Performance in a Complex and Dynamic System,” by D. Truong, M. A. Friend, & H. 
Chen, 2018. Transportation Journal, 57(1), 24-52. Copyright 2018 by the Transportation 
Journal. 
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Gaps in the Literature 

A review of the extant aviation research literature on topics pertinent to the study 

was conducted.  The three areas of focus were: (a) federal guidelines and oversight of 

hazards associated with unstable approaches and runway excursions, (b) aviation research 

conducted on pilot risk perception and risk tolerance, and (c) aviation research using 

predictive modelling based on advanced ML techniques applied to large FDR data.  

While the review describes many examples of aviation research in each of these topics, 

the recommendations among the aviation researchers conducting the most recent relevant 

work (approximately last five years) describes gaps and opportunities for future research 

and is presented here.  

Unstable approach and runway excursion hazards.  The FAA, NTSB, and FSF 

have provided oversight, guidance, and/or recommendations to operators regarding the 

hazards associated with mitigating the risk of runway excursions.  The FAA has listed 

unstable approaches as one of the most common causal factors (FAA, 2014).  The FSF 

and NTSB corroborate this assertion that stable approaches (and safe landings) begin 

early in the approach planning phase of flight (FSF, 2009; NTSB, 2016, 2019b).  These 

organizations have called for improved pilot training initiatives, enhanced CRM training, 

as well as research into risk mitigation strategies for operators to avoid the hazards 

associated with unstable approaches (FAA, 2017b; NTSB, 2016, 2019b).  Recent aviation 

accidents have demonstrated that unstable approaches continue to be causal factors.  The 

NTSB has recommended that the aviation industry respond to the hazard of unstable 

approaches with improvements in pilot training, as well as the development of CRM 
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techniques to enhance pilot risk assessment and perception in flight operations (NTSB, 

2013, 2019b). 

Pilot risk perception and risk tolerance.  You and Han (2013) describe how the 

safe operational behavior of pilots can be affected by HF characteristics such as ADM, 

HIP, SA, and interpersonal communications and teamwork attitudes.  The researchers 

build on the previous work of Hunter (2005) regarding the correlation between pilot risk 

perception and hazardous events.  They used the Risk Perception Scale developed by 

Hunter to conduct surveys of pilot attitudes associated with perception of risk and the 

relative levels of safety inherent in airline operations.  Results of the study indicate that 

present research on pilot risk perception and risk tolerance vary with pilot perception of 

locus of control, or the belief that one has a direct effect of the outcome of a situation.  

The researchers continue to assert that once a pilot achieves a certain threshold of flight 

experience, measured in total flight time, then perception of internal locus of control 

diminishes.  Important recommendations for future research regarding pilot risk 

perception are that future research be conducted to identify key factors that contribute to 

inaccurate perceptions of risk, as well as the exploration of effects of organizational 

safety culture on safe operational behaviors. 

Ju, Ji, Lan, and You (2017) conducted research addressing recommendations by 

You and Han (2013) by investigating what factors affect pilot perception of risk.  

Specifically, the study explored the relationship between narcissistic personality and 

optimism in aviation risk perception.  A key component of the research was to determine 

whether self-promotion mediated the personality traits of narcissism and over-optimism 

in pilot risk perception.  Results of the study indicated that narcissism had a significant 



79 

 

 

effect on risk perception among pilots, in that overestimation of promotion focus predicts 

underestimation of risk.  The researchers limited their study to that of optimism bias and 

recommend that future studies address other cognitive biases.  The research team also 

recommends that active airline pilots be included in the study, rather than the inclusion of 

only flight students.  Agreeing with You and Han (2013), the researcher concurs that 

organizational safety culture effects on pilot risk perception be explored. 

Predictive modeling using recorded flight data.  The literature provides several 

examples of research based on anomaly detection to identify abnormal flight events.  

Bharadwaj et al. (2013) detail a multifaceted process of discovering and describing 

unusual events as Anomaly Detection.  They use the term synonymously with unusual 

occurrences, outliers, and surprises.  The researchers further assert that the process 

encompasses several attributes, including the type of anomaly, the nature of the data, and 

the handling of uncertainty inherent in the system.  Contextual anomalies describe 

abnormal occurrences as defined by guidelines or expectations.  For example, an unstable 

approach is considered an anomaly in the context of this research, as defined by any 

exceedance of limitations presented in FAA AC 120-71A and later refined in AC 91-

79A.  Hence, anomaly detection can be described as occurrences that do not fall into 

normal regions of expectations or standards.  In terms of complex systems with multiple 

regions of normal behaviors, such as flight operations (takeoff, cruise, descent, and 

approach and landing phases of flight), anomaly detection describes operations which do 

not fall into these regions.  The researchers further assert that abnormal behaviors may 
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appear as clusters that are discernible from normal clusters.  Thus, these clusters can 

become the framework which describes clustering algorithms models. 

Building upon this work, Li et al. (2015) and Aslaner, Unal, and Iyigun (2016) 

applied clustering techniques to flight data to identify anomalies in the takeoff and 

landing phases of flight.  The research was designed using two experimental methods: 

one to sample 91 flight parameters in the effort to identify abnormal flight events and a 

second to evaluate three different data clustering algorithms.  Limitations to the study 

include a vague description of what constitutes abnormal flight events, variables of 

interest in the clustering analysis, and the lack of a clearly defined target variable.  It is 

also unclear what coding was used to build the models used in the evaluation of the 

algorithms.  Additionally, the SMEs used in the evaluation of the abnormal flight events 

do not apply any standard criteria in their analysis.  The researchers agree that future 

research should investigate the application of advanced ML techniques to large FDM data 

to try and identify previously unknown anomalies. 

Gera and Goel (2015) suggest that data mining is part of a more general process 

based on the discovery of knowledge pertaining to large data.  They further describe the 

idea that several sources of data can be exploited simultaneously and introduce the 

concept of dynamic and static sources of data.  Dynamic data sets, like those generated 

by FDR data of commercial aircraft operations in the NAS, are particularly important to 

aviation research.  The research team recommends that future research use large FDM 

data to explore the continuously changing environmental conditions inherent in the NAS. 

Tong et al. (2018) analyze and process QAR using RFs to predict the landing 

speed of commercial aircraft.  The researchers collected data from the QAR devices 
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onboard Airbus A300 aircraft from a single operator based on 2000 flight segments. The 

research team asserts that their most significant result was the ability to predict landing 

speed, which they describe as a causal factor in landing accidents.  Additionally, the team 

describes how RFs were able to extract the most important features.  The team 

recommends that AI be incorporated into future studies in order to process the sensor 

data. 

Gallego et al. (2018) produced research with the objective of investigating the 

effects of operational input variables on the vertical flight path trajectory prediction.  

Additionally, the research team desired to determine what important input variables 

should be included in the feature selection segment of the knowledge discovery process. 

ML techniques were used to determine the flow patterns within the DWH.  Contrasting 

other similar studies, the researchers chose to use a set of Multilevel Linear Models 

(MLMs), which were adopted to investigate vertical aircraft flight path trajectories on 

descent into the airport.  Key discriminators included: operational vertical procedures, 

airline specific procedures, and unique flow patterns to the airport. The researchers 

recommend that future research investigate different airspace sectors for flow similarities.  

The researchers also agree with Kang and Hansen (2018) and Achenbach and Spinler 

(2018) that future research should incorporate weather-related data for improving 

accuracy of the predictive models.  Finally, the researchers recommend that GBMs, as 

well as other data-driven approaches, should be explored in order to more accurately 

predict aircraft flight path trajectory. 

Finally, Oehling and Barry (2019) present the use of ML techniques to detect 

unknown occurrences in flight data, generated by approximately three hundred aircraft, 
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from six different Airbus A320 fleets and sub-fleets, for over 1000 flights per day, from 

March 2013 to March 2016.  The researchers introduce methods enhancing the safety 

knowledge discovery process.  They continue to describe ML in terms of algorithms 

which learn from the data.  The researchers assert that effective uses have been 

demonstrated with software which builds models, based on input data, rather than a 

predefined model which was encoded in the software during algorithm development.  

The study divides ML subcategories into both supervised and unsupervised learning.  

Supporting the recommendations of Aslaner et al. (2016), Bharadwaj et al. (2013), and Li 

et al. (2015), the researchers recommend that future studies using advanced ML methods 

be applied to large FDM data to detect unknown anomalies. 

Walker (2017) details the development of the modern QAR.  The ability to gather 

large FDM data with advances in QAR technology has encouraged new developments in 

advanced data driven techniques such as advanced ML methods.  The large data being 

gathered daily in the NAS by these QAR devices has presented an opportunity for the 

exploration and investigation of these data.  Aviation research using data mining of QAR 

data has progressed from strictly exceedance based anomaly detection, to both semi-

supervised and unsupervised ML methods.  The researcher makes an important assertion 

regarding the concept of leading vs. lagging indications of measurable precursors to 

accidents or incidents.  Walker makes the distinction between reactive discovery based 

on lagging indicators and proactive discovery based on leading indicators.  This 

distinction is significant regarding the transition from reactive to predictive modeling of 

flight data.  Walker continues to describe the evolution of the use of flight data collection 
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devices from post-accident analysis to actively accessing, analyzing, and preventing 

anomalous flight events. 

Das et al. (2010) conducted research using known exceedance criteria and applied 

the criteria to QAR data using MKAD and CAD to detect anomalous events on 

commercial aircraft.  The data driven study compared several different ML algorithms to 

detect previously unknown anomalous events.  Similar to the study conducted by Li et al. 

(2016), a structured process was not used in the cleaning, examination, or processing of 

the FDM data.  In both of these cases, SMEs were used to design exceedance criteria, 

which were then used to identify variables of interest, prior to the application of cluster 

analysis based ML techniques.  These works focused on the identification of anomalous 

events, as defined by SMEs, rather than a standardized aviation knowledge discovery 

process based on industry standard or federal guidelines. 

Bharadwaj et al. (2013) led a NASA Aviation Safety project to develop data 

driven, supervised and unsupervised techniques to enhance the diagnostic capabilities of 

in-flight systems’ reasoners.  The researchers build on the work of Li et al. (2016) and 

Das et al. (2010) using supervised clustering techniques to detect anomalous events.  The 

team advances the data process model with a data driven analysis using feature analysis 

based on nominal data frame comparison.  Similar to previous works, the research is 

limited by the necessity of SME developed exceedance criteria. 

Theoretical Foundation 

Aviation safety knowledge discovery process.  Matthews et al. (2013) introduce 

the aviation safety knowledge discovery (AVSKD) process, which was used as the model 

for the research.  The AVSKD process describes the entire process for analyzing aviation 
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data from raw FOQA data to reporting of predictive models.  The AVSKD framework 

illustrated in Figure 4 was adapted as the framework for the methodology for the 

research. 

 

 

Figure 4. Aviation safety knowledge discovery (AVSKD) process.  From “Discovering 
Anomalous Aviation Safety Events Using Scalable Data Mining Algorithms,” by B. 
Matthews, S. Das, K. Bhaduri, K. Das, R. Martin, and N. Oza, 2013, Journal of 
Aerospace Information Systems, 10(10), p. 469. Copyright 2013 by the Journal of 
Aerospace Information Systems. 
 
 

The rectangles in Figure 3 on the far left denote the raw flight operational quality 

assurance (FOQA) data inputs from the aircraft.  The data preparation module is where 

the domain expert typically identifies the types of data and selects, segregates, and 

normalizes the data variables. Because FAA criteria were used in the feature selection 

process, these functions as well as SME input, were not required.  Additionally, in the 

feature construction module, the separated discrete and continuous data parameters 

undergo sequence construction and quantization.  The goal of the detection module is to 

identify anomalous events of interest (outliers) at both the fleet and flight levels using the 

open-source multiple-kernel anomaly detection (MKAD) and index-Orca (iOrca) 

knowledge discovery algorithms, respectively. Then ranked data profiles are created from 

the processed datasets.  During the knowledge discovery process in the post-processing 
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module, the frequency and severity of the distance-based events are determined using the 

multivariate time series (MTS) tool and a sequence similarity search (S3). The anomalies 

are typically validated using domain field experts, text reports database (TRD), and flight 

crew interviews; however, FAA exceedance criteria precluded the necessity of a domain 

field expert, and TRD and flight crew narratives were not available.  The last step of the 

knowledge discovery process is the generation of a report summarizing and visualizing 

the results.   

Data and preprocessing.  Raw FDM, or QAR data, from each aircraft, are 

collected for input into the AVSKD process.  Each flight data record is constructed as a 

matrix with rows corresponding to time sampling, and columns to specific parameters.  

The sample rate can vary based on complexity of the QAR, with typical rates of 1 Hz and 

a flight record generating approximately 5000-6000 samples and up to approximately 300 

parameters.  Both discrete and continuous parameters are gathered.  Data preparation is 

then conducted, with the raw data put through a data preparation module, which performs 

feature selection, data type segregation, missing data processing, noise filtering, and 

normalization.   

Anomaly detection algorithms.  Considering AVSKD is a flexible process, 

different types of ML algorithms can be integrated into the process.  Thus, the algorithms 

selected and applied to the AVSKD process can vary based on the type of research being 

conducted.  The six ML algorithms previously described were used to build predictive 

models based on cases determined to contain anomalous unstable approach events.  Hui 

and Fanxing (2012) describe the difficulties encountered in data processing and introduce 

a symbolic aggregate approximation (SAX) algorithm to enhance the accuracy and 
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performance of anomaly detection in QAR data.  Even though the SAX algorithm 

experienced less than desirable accuracy, the research is indicative of the crucial role of 

algorithm in QAR flight data anomaly detection capability. 

Knowledge discovery.  Once anomalies have been discovered, the database is 

examined for frequency of events and for the purposes of predictive model building.  

Mathews et al. (2013) assert that validation of the events through domain expertise is 

typical and considered industry standard. Because FAA guidance was followed as the 

standard for feature selection, it was evident that the data variables used in the assessment 

of FAA exceedance criteria were valid.  The final step in the AVSKD process is the 

reporting system.  The reporting system consisted of figures representing important 

impact factors in the prediction of the target variable, UARM.  The displays are 

percentage contributions for discrete variables, graphical plots for continuous variables, 

and percentage contributions of each continuous variable. 

Sample, explore, modify, model, assess (SEMMA).  The SAS Institute (Patel & 

Thompson, 2013) recommends using the SEMMA modeling process with SAS® 

Enterprise MinerTM.  Specifically, the SEMMA acronym stands for Sample, Explore, 

Modify, Model, and Assess.  The SEMMA process is iterative in nature, and the Sample 

or Explore stages were repeated after assessment of the model in order to make changes 
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and then repeat the Model, Modify, and Assess processes (Maxson, 2018).  This process 

was adapted for the study as illustrated in Figure 5.  

 
Figure 5. Sample, Explore, Modify, Model, Assess (SEMMA) knowledge discovery.  
UARM = Unstable Approach Risk Misperception; NN = neural network; DT = decision 
tree; SVM = support vector machine; GBM = gradient boost machine; RF = random 
forest.  Adapted from “Prediction of Airport Arrival Rates Using Data Mining Methods” 
(Doctoral Dissertation) by R. W. Maxson, 2018, p. 70. Copyright 2018 by R. W. Maxson. 
 

Sample.  To begin the process, the data were inputted into the data mining 

software as input variables and a target variable is selected, e.g. UARM. The data were 

then partitioned into model training and validation subsets.  The SAS© Enterprise 

MinerTM is compatible with many data input formats.  

Explore.  Once the data were uploaded into SAS Enterprise MinerTM, the data 

were examined for missing variables, outliers, and/or skewed or peaked distributions.  

Several tools were available to use for these purposes; “StatExplore” was used for 

clustering, correlation, graphical investigation, and variable selection.  The operational 
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input and target variable were selected in the Sample module, and an iterative process 

included modifications after the data were inspected in the Explore step.  

Modify.  The purpose of this step was to prepare the data for model construction.  

This task could have been accomplished in several ways: inputting missing values, 

filtering the selected data, adding data to the set of data, merging the data with other 

sources, or partitioning the input data into smaller subsets.  In this step, the data was 

further processed based on model construction requirements.  Using the Model menu, 

“AutoNeural” was used to determine the most appropriate action for the NN, for 

example.  Similarly, regarding regression model construction, data could have been 

transformed or imputed using dummy variables for categorical variables, and missing 

values could have either been removed or imputed (Maxson, 2018; Sarma, 2013). 

Model.  In this step, the prepared data were used to construct the models: decision 

trees, neural networks, regression, SVM, RFs, and GBMs.  The software allowed 

flexibility in model construction depending on the data being used and the problem being 

investigated.  Also, simultaneous model evaluations and comparisons were possible 

(Maxson, 2018; Sarma, 2013).  

Assess.  Finally, the models were compared and assessed using the model 

comparison function in the “Assess” menu grouping.  Model assessment capability 

includes performance scores which are used to rank the models.  ASE or misclassification 

rate could have been used to score the models and Receiver Operating Characteristic 
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(ROC) and lift curves in the assessment of model performance (Maxson, 2018; Tufféry, 

2011). 

Summary 

Although hazards have been identified with the continued occurrences of runway 

excursions, a reliable and valid representation of rejected landing decision making based 

on unstable approach criteria has not been fully investigated (Koteeswaran et al., 2017).  

Limitations inherent in qualitative methods are evident in the literature, with examples of 

text mining narratives from LOSA field observations, NASA voluntary ASRS reports, 

and surveys.  The extant literature does not indicate that there is research that addresses 

or exploits the large amount of aircraft data available (Matthews et al., 2013).  Recent 

studies have described that aviation researchers have begun to realize the application of 

advanced data mining techniques as an appropriate and powerful tool to handle these 

voluminous data being generated daily by FDM and FOQA programs (Li et al., 2015; 

Puranik & Mavris, 2018; Shi et al., 2017).  However, these recent studies have focused 

primarily on the validation and evaluation of advanced mathematical algorithms and 

leave analysis of safety mitigation information for either further research or with the 

qualitative assessment of a subject matter expert (Arockia et al., 2016; Li et al., 2015; 

Puranik, & Mavris, 2018). 

Finally, several salient aspects of the literature become evident based on the 

review focusing on large data and prediction of in-flight anomalies.  The first factor that 

becomes apparent is the large amount of data that are being recorded by advanced digital 

flight recorders on every commercial airline flight in the NAS.  Airlines are encouraged 

by the FAA to voluntarily participate in the FOQA program.  FOQA was designed to 
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improve safety in commercial aviation by allowing airlines and pilots to share de-

identified aggregate information with the FAA so that the FAA can monitor national 

trends in aircraft operations and focus its resources to address risk issues (e.g., flight 

operations, air traffic control (ATC), airports) (FAA, 2004).  Although voluntary (in the 

United States), the FOQA program has resulted in very large amounts of flight data that 

have not been accessed on a scale appropriate for these data.  Even though pilot safety 

reports, accident reports, and safety debrief narratives constitute a large amount of data, 

the literature indicates that these data have only been explored with the use of text mining 

and qualitative methods.  Second, while a review of the literature indicates that various 

statistical analytical methods have revealed clear patterns in the prediction of pilot 

performance, these data have not been fully exploited in order to fully investigate 

significant relationships of the predictors. Third, the extant literature indicates that once 

the relationship connecting pilot performance to flight anomaly variable inputs was 

explained, that future pilot performance in the approach and landing phases of flight 

could be estimated.  Finally, although much of the existing literature presents results on 

the evaluation of complex algorithms applied to large data, subject matter experts have 

been required to analyze the results and apply them to aviation problems.  A review of 

the existing literature indicates a gap in the research in the application of predictive 

modeling techniques, particularly the application of these techniques to the prediction of 

probability of occurrence of factors contributing to pilot misperception of risk.  Table 2 

presents a summary of key aspects of related literature.  This gap in the body of 

knowledge created an opportunity to provide a contribution with the research. 
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Table 2 

Summary of Primary Aviation Research Using Recorded Flight Data 

Study 
Machine 
Learning 
Model 

Data 
Source 

Modeling 
Approach 

Target 
Variable Limitations Findings 

Li, et al., 2015 Cluster 
analysis 

FDM Reactive Abnormal 
events 

Small sample Anomaly 
detection 

Mathews, et al., 2013 Cluster 
analysis 

FOQA Reactive Abnormal 
events 

Excludes 
weather data 
 

Anomaly 
detection 

Truong, et al.., 2018 DT & 
Bayesian 
network 

FAA 
ASPM 

Predictive On-time 
performance 

Only two 
airports 

Prediction 
of target 

Treder, 2004 DT & NN FOQA Reactive Exceedance 
criteria 

Proof of 
concept 

Anomaly 
detection 

Christopher, et al.., 
2016 

DT Mishaps Reactive Classifcation  Limited 
accident data 

Classification 
model 

Tong, 2018 RF QAR Predictive Landing speed Small 
sample 

High 
predictive 
accuracy 

 
Oehling, 2019 
 

NN FOQA Predictive Unknown 
safety 
events 

One aircraft 
type 

Unsupervised 
knowledge 
benefits 

Note. DT = Decision Tree. NN = Neural Network. RF = Random Forest. FDM = Flight 
Data Monitoring. FOQA = Flight Operational Quality Assurance. ASPM = Aviation 
System Performance Matrix. QAR = Quick Access Recorder. 
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CHAPTER III 

METHODOLOGY 

The purpose of this research was to utilize data mining techniques to explore a 

large-volume database of flight data recorder (FDR) data from commercial flight 

operations to predict Unstable Approach Risk Misperception (UARM).  The focus of this 

exploration was on the data generated beginning at the assessment window (500 ft AGL) 

to a point of either a landing or a rejected landing. The complete list of variables recorded 

by the FDRs is listed in Appendix C.  Variables were defined using the recorded flight 

data parameters, with FAA AC-120-71A providing guidance for variable selection for the 

UARM algorithm.  For example, (a) target approach speed deviation, (b) flap position, 

(c) landing gear position, (d) engine speed, (e) altitude above ground level (AGL), and (f) 

glide path deviation are variables stated in the FAA stable approach criteria categories. 

Adherence to stable approach criteria was determined based on the data, including: (a) 

the vertical and lateral position of the aircraft with reference to the landing runway, (b) 

energy state, and (c) landing configuration. The information gathered in the data analysis 

was then used to predict the probability of the pilot misperceiving the runway excursion 

risk of continuing an unstable approach to landing.  Pilot misperception was represented 

by the decision to continue to a landing even when evidence exists of exceedance in any 

one or more of the flight data variables from the stabilized approach criteria, and for 

purposes of this research, was referred to as UARM.  Data mining techniques were used 

to populate and compare various predictive models and to determine the most accurate 

model, which was then used to make predictions of the target variable.  
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The research was exploratory and data-driven in nature, based on the following 

research questions:  

• How can the application of data-mining and machine learning techniques to recorded 

flight data be used to predict the probability of Unstable Approach Risk 

Misperception by the pilot? 

• What flight data variables are the most important predictors of pilot misperception of 

a runway excursion hazard as evidenced by continuing an unstable approach to a 

landing?  

The AVSKD data processing model was used to address data sampling, partitioning, 

and validation. This chapter describes in detail the step by step process that was used in 

the processing of the data and the predictive model construction.  The SEMMA process 

was used to process the flight data sets integral to the SAS® EM™ predictive modeling 

software. 

Research Method Selection and Design 

The research methodology chosen for the study was selected to build and test 

prediction models of UARM using large flight data.  The research utilized predictive data 

mining methods, processes, and applications.  Tufféry (2011) describes data mining as a 

method for exploring and analyzing large data with the purpose of discovering unknown 

or hidden patterns or relationships.  In the research, data mining techniques were used to 

explore the approach and landing phases of flight for evidence of unstable approach 

criteria exceedance, as well as the presence, or not, of UARM.  The flight data was 

explored to determine how unstable approaches and UARM could be measured.  In order 

to answer the research questions, and to predict the probability that UARM would occur 
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during an unstable approach, the following were used to build the models: (a) logistic 

regression, (b) decision tree, (c) neural network, (d) support vector machine, (e) gradient 

boost machine, and (f) random forest.  Flight-related variables representing approach 

speed, glideslope deviation (i.e. vertical), localizer deviation (i.e. horizontal), aircraft 

landing configuration, engine thrust, vertical rate of descent, and altitude above ground 

level were anticipated to be the main focus of the models (see Table 3).  Additionally, the 

occurrence of a rejected landing, or continued approach to landing, when confronted with 

evidence of an unstable approach, was also included.  Flight variables for weight on 

wheels (WOW, > 0) and radar altimeter (RALT, > 0) were used to determine whether or 

not a rejected landing was executed.  

Data mining was chosen to be the appropriate method for the research based on 

the goal of exploring very large flight data.  The AVSKD data processing model was 

used as a framework for the exploration of large data collected by the flight data 

recorders on aircraft operating in the NAS.  The data sets used for this research were 

assembled by NASA and are publicly available.  Mathews et al (2013) have validated the 

AVSKD process.  

A description of the data source, samples, data mining software, and analytical 

techniques proposed for the research are presented.  As stated in the research questions, 

the intent of the research was to discover how unstable approaches and UARM could be 

measured when examining large data.  Predictive data mining algorithms were used to 

estimate the veracity of this approach by constructing, testing, and comparing these 

models. 
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Population/Sample 

The NASA gathered the data from one regional airline, from one type of multi-

engine transport category aircraft. 

• Population: U.S. domestic regional airlines. 

• Sampling frame: FDR data from 35 regional jets, over a period of four years, 

from 2001-2004. 

• Sample size: Data was comprised of 186 flight variables and approximately 

152,000 rows of data (representing approach and landing or rejected landing 

events).  A pilot study was accomplished to validate the algorithm developed 

to determine UARM.  The data used in the pilot study was sampled solely 

from one aircraft tail number data set.  The complete data set was then 

partitioned into training and validation samples. 2004 data was used for 

scoring the final model. 

As previously described, sampling of the data included only the portion of the 

flight from 500 feet above ground level, during the approach phase, to a point when 

either a landing, or a rejected landing, was evident. Although 186 variables were 

available in the FDM data, those variables affecting one of three areas (energy state, 

aircraft configuration, and aircraft relative position to the landing runway) were initially 

examined in the feature selection process.  These flight data variables are presented in 

tabulated form and listed in Appendix C, for convenience of reference. 

Population and sampling frame.  For the study, the population was limited to 

one regional jet operator in the National Airspace System.  NASA has made available 

data collected from a single operator of regional jets, with only one model of aircraft 
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(unknown type/model/series) represented in the research. Although data were available 

from these 35 aircraft over a period of four years, the sampled data was restricted to the 

approach and landing phase of flight, beginning at 500 AGL until either a landing or a 

rejected landing was performed. Figure 6 shows the points at which data was collected. 

 

Figure 6. Data collection points. Adapted from “Air Traffic Bulletin Procedures (ATB 
2019-1),” by Federal Aviation Administration Air Traffic Procedures, April 2019, p. 2. 
Retrieved from https://www.faa.gov/air_traffic/publications/media/atb_april_2019.pdf 

 

Sample size. The data were sampled at several different rates, depending on the 

variable.  Sample rates varied from 0.25 to 4 Hz.  The data sets were partitioned into two 

separate files.  One file consisted of three years (2001-2003) of data (194.3 Megabytes) 

and a second sample that consisted of one year (2004) data (18.7 Megabytes).  The data 

were sampled from each flight to identify evidence of unstable approaches, with a total of 

152,000 rows of data, representing approach and either landing or rejected landing 

events. 
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Sampling strategy.  The strategy used to provide a sampling frame was based on 

the flight variables described in FAA AC 91-79A.  The purpose of the sampling strategy 

was to extract only those data sets that provided evidence of unstable approaches, as 

defined by the FAA AC.  The collected data sample was then assessed for evidence of 

not only an unstable approach, but for evidence of UARM. 

Data Collection Process 

The data collection process followed a framework adapted from Mathews et al. 

(2013) and Maxson (2018).  The data was collected and archived by NASA and made 

available for public use.  The AVSKD process began with the processing and cleaning of 

large flight data and then progressed to feature selection.  Feature selection of flight 

variables representing FAA unstable approach criteria variables was based on energy 

state, aircraft landing configuration, and aircraft position relative to the runway as defined 

by FAA AC 91-79A.   

Procedures.  

• The data were made available by NASA and are accessible to the public on 

the NASA DASHlink website.  Recorded data from 35 transport category 

aircraft of the same type and model were collected over a four-year period 

(2001-2004). 

• The data are available to the public without permission or any restrictions.  All 

flight data was de-identified regarding individual aircrew, airline, aircraft type, 

operating area, types of approaches, and any other possible identifying 

features such as airports or unique terrain or weather patterns. 
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• The Mathematical Laboratory (MATLAB®) files (mat) for each of the 35 

aircraft tail numbers were downloaded using the DASHlink shell executable.  

Some errors in file nomenclature were noted and corrected in the downloading 

process.  For example, tail number 679 did not exist as labelled.  Additionally, 

one file originally included in data from tail number 666 was mislabeled, and 

it actually belonged in the file for tail number 674.  Data processing started by 

downloading and verifying that data for each tail number were complete and 

properly labeled.  Data files were uncompressed, with 232 gigabytes (GB) of 

data contained in 180,159 (.mat) files and was found to be organized with file 

names based on each aircraft tail number.  The data was found to be uniform, 

with the same sample rate for all of the variables contained in each of the 

(.mat) files.  NASA was able to provide information on missing values, and 

none were discovered in the exploration of the data.  

The next step in the data process was to partition the data and extract only 

that portion of the flight data pertinent to the study.  As previously described, 

only that data from 500 ft AGL to either a go-around or landing was 

examined.  An algorithm was developed to extract the unstable approaches 

and UARM from the data.  Once the algorithm was developed, flight data 

representing unstable approaches were partitioned into training and 

validations data sets for the purpose of creating input files for predictive 

modeling in the SAS® EM™ software package. 
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Data Coding and Algorithm Development 

Flight-related variables representing: (a) approach speed, (b) glideslope deviation 

(i.e. vertical), (c) localizer deviation (i.e. horizontal), (d) aircraft landing configuration, 

(e) engine thrust, (f) vertical rate of descent, and (g) altitude above ground level were 

anticipated to be the main focus of the models. 

The archived data have been collected for each flight in matrix format with each 

row corresponding to snapshot in time, and each column corresponding to each flight 

variable.  The acquisition of these data represented an opportunity for aviation research, 

with the application of data mining techniques as a strategy to discover empirical 

relationships between the variables captured in large data.  The data was explored to 

determine instances when FAA stable approach criteria were not met, and then whether a 

landing or rejected landing was executed.  As presented in Figure 7, only the approach to 

a landing, or rejected landing, was examined in the exploration of the data.  

 

Figure 7. Research procedure framework.  UARM = Unstable Approach Risk 
Misperception; NN = neural network; DT = decision tree; SVM = support vector 
machine; GBM = gradient boost machine; RF = random forest.  Adapted from 
“Discovering Anomalous Aviation Safety Events Using Scalable Data Mining 
Algorithms,” by B. Matthews, S. Das, K. Bhaduri, K. Das, R. Martin, and N. Oza, 2013, 
Journal of Aerospace Information Systems, 10(10), p. 469. Copyright 2013 by the Journal 
of Aerospace Information System, and from “Prediction of Airport Arrival Rates Using 
Data Mining Methods” (Doctoral Dissertation) by R. W. Maxson, 2018, p. 70. Copyright 
2018 by R. W. Maxson. 
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The data were cleaned and processed by a data processing specialist, who is a 

computational mathematics and aerospace engineering student at Embry-Riddle 

Aeronautical University, following the AVSKD shown in Figure 5.  The data preparation 

module performed several functions: (a) feature selection, (b) segregation, (c) missing 

data processing, (d) noise filtering, and (e) normalization.  The FAA unstable approach 

criteria were used to validate the choice of variables (feature construction) that are most 

relevant for the analysis, as presented in Figure 5.  Considering FDR data often have 

missing data, out-of-bounds variables, noisy recordings and amplitude spikes, the next 

step in the data process applied several data quality filters to clean the data.  Finally, the 

continuous data variables were either normalized using z score or 0 or 1 normalization, 

or categorical data variables (gear or flap position) were converted into a dichotomous 

representation (Mathews et al., 2013). 

A description of the data preprocessing follows and includes details regarding the 

conversion of data into format and structure for subsequent analysis.  Primary tasks in 

this process included coding of flight data variables and development of an algorithm that 

was used to extract unstable approach evidence as well as UARM.  Kumar, Tan, and 

Steinbach (2018) and Zhao, Bin, and Wang (2017) describe the process of extracting 

useful information from large data.  The researchers provide details of how data mining 

techniques can be used to discover interesting knowledge automatically from large data 

sets (Kumar, Tan, & Steinbach, 2018; Zhao, Bin, &Wang, 2017).  Kumar et al. (2018) 

continue to describe how the Knowledge Discovery in Databases (KDD) refers to the 

process of transforming raw data into knowledge through a series of procedural steps, to 
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include data preprocessing, data mining, and post processing.  Although Zhao et al. 

(2017) describe shortcomings in subjective threshold selection in flight parameter 

exceedance based designs, Kumar et al. (2018) assert that a sequential-based process 

including feature selection and construction depend primarily on successful data 

segmentation and extraction.  Kumar et al. (2018) also insist that data preprocessing 

encompasses more than half of the KDD tasks.   

The first step in the preprocessing of data required the raw FDR data from each 

aircraft to be collected.  Lommadi (2019) classifies data structures based on the 

organization of the data in a computer’s memory.  FDR data containing various datatypes 

such as linked, ordered, and/or unordered lists are considered to be heterogeneous.  The 

first step in the coding process was to structure the data in matrix form, with rows of time 

samples and columns of observed flight parameters.  The heterogeneous data were 

collected from takeoff to landing and consisted of 186 parameters approximately 152,000 

rows representing the approach and landing or rejected landing events.  NASA performed 

initial preparation of the raw FDR data in the data preparation module of the AVSKD 

process.  Functions performed include: (a) feature selection, (b) data type partitioning, (c) 

missing data identification and processing, (d) noise filtering, and (e) normalization.  

Feature selection was performed with flight variables chosen based on relevance to 

unstable approach criteria as previously described.  NASA then performed additional 

preprocessing functions by applying quality filtering and cleaning.  Derived parameters 

were then used to discover unreported aircraft states: energy state, landing configuration, 

and location relative runway, as defined along with exceedance criteria, and presented in 

Table 3.   
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Sampling strategy included taking an average of the flight variable values over 

five seconds to decrease likelihood of inaccurate identification of unstable approaches.  

Additionally, target approach reference speed criteria were based on approach speed 

categories defined by the FAA under Title 14, Code of Federal Regulations, Chapter I, 

Subchapter F, Part 97, Subpart A., § 97.3 (FAA, 2012).  

Table 3 

Summary of Unstable Approach Criteria Using Recorded Flight Data 

Unstable Approach Construct Flight Data Variables Exceedance Criteria 

Energy State 

IVV 

GS 

ALTR 

CAS 

IVV > 1000 FPM 

110 Knots > GS >150 Knots 

ALTR > 1000 FPM 

110 > CAS > 150 Knots 

Landing Configuration 

LGDN 

PLA1 

PLA2 

PLA3 

PLA4 

LGDN not down 

Any 3 PLA = 0 

Relative Runway Location 

DA 

LOC 

GLS 

DA > 3 SD 

LOC > 3 SD 

GLS > 3 SD 

Note. IVV = Inertial Vertical Velocity. FPM = Feet Per Minute. GS = Ground Speed. ALTR = Altitude 
Rate. CAS = Calibrated Airspeed. LGDN = Landing Gear Down. PLA = Power Lever Angle. DA = Drift 
Angle. LOC = Localizer. GLS = Glideslope. SD = Standard Deviation. 
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 One of the primary tasks was to identify unstable approaches.  In order to identify 

unstable approaches, a snapshot was taken at 500 ft AGL to perform an assessment of the 

sampled data against FAA stable approach criteria.  This task was performed by taking a 

moving average time value of the radio altimeter variable (RALT), over a 5 second 

window, as suggested by Ravindran and Meht (2018), who provide details on the process 

of partitioning large data structures.  The researchers suggest that the goal of partitioning 

is to divide key values in a distributed system. Chen, Zhang, Zhao, and Xia (2017) 

introduce and validate this method in their research modeling the approach phase of flight 

for Airbus 321 aircraft.  The researchers describe how they eliminated influences of 

dimension on variable relationships by unifying the sample rate.  The research team 

performed this task of unifying the sample rate by averaging the mean of the variable per 

second (Chen et al., 2017).  Takahashi and Delisle (2018) present an alternative coding 

procedure for Airbus 320 unstable approach modeling using a time-step integrating point-

mass simulation.  This coding technique requires tabular aerodynamic files, propulsion 

data file, and assumes flight under nominal trimmed conditions.  These requirements 

precluded this option, so the moving time average values introduced by Chen et al. 

(2017) was deemed more appropriate. The script identifier was then used to segregate the 

data less than 500 AGL.  Next, the coding process was used to identify points where the 

aircraft has just passed through 500 feet (on ascent or descent).  Data coding was used to 

manipulate the data so that only descending (not ascending, i.e. takeoff) flight path 

variables were used, thus representing the approach and landing phases of flight, as 

described by Kommadi (2019).  The researcher describes how search algorithms can be 

developed to retrieve information stored in large sources of data.  Kommadi (2019) also 
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presents details of the search algorithm, which can be enhanced to discover multiple 

values related to search criteria. The coding process was used to further determine if a 

landing or rejected landing was performed.  In order to accomplish this task, an event 

window was analyzed to determine if weight on wheels (LMG or RMG) was greater than 

zero, indicating a landing, and if it equals zero, then a rejected landing is indicated.  A 

complete description of the coding process is listed in Appendix B.  

Both flow chart and pseudo code was used to represent the algorithm in the 

research.  Kommadi (2019) describes how keywords, documentation, and action tasks 

can assist in the visualization of the algorithm.  The researcher continues to compare and 

contrast flow chart representations of algorithms.  Algorithms depict the process of 

problem solving, decision making, and logic applications.  Flow charts use symbols in 

series to provide a visual representation of the problem to be considered and the AVSKD 

data process was applied to FDR data.  The process followed analysis based on 

consideration of approach/unstable approach evidence, and the decision to either continue 

to landing or to execute a rejected landing.  The flow chart representing this logic process 

is presented in Figure 8. 
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Figure 8. Unstable Approach Risk Misperception Algorithm Flow Diagram.   
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Once the data were cleaned and formatted, knowledge discovery algorithms was 

applied to determine which flights contain evidence of unstable approaches.  Mathews et 

al. (2013) assert that the AVSKD is a very flexible process.  The researchers continue to 

describe the development and application of several anomaly detection algorithms, which 

have been successfully demonstrated in various aspects of anomaly detection in recorded 

flight data. 

Once evidence of unstable approaches was discovered using a simple algorithm 

based anomaly detection technique, the frequency and result (presence or not of UARM) 

was then determined.  Mathews et al. (2013) detail the use of a tool called the 

Multivariate Time-Series Search (MTS) which can be used to search for similar anomaly 

evidences in the entire database: 

The MTS tool takes as input the data files (which can be very large), a 

query in the form of a multivariate time series defined over a small subset 

of variables, and a threshold ϵ specifying the radius of the search with 

respect to the query. It returns all the location pairs in the form of (file 

number, time instance) where a match has been found. In the preliminary 

phase, an index is built on the dataset. This consists of selecting a random 

point from the dataset (called the reference point) and then rearranging all 

the other points in the dataset according to distance to this fixed point.  (p. 

5) 

Data Mining Process 

As described in the literature review, Sarma (2013) presents an outline of the data 

analysis approach.  The data process at this point in the AVSKD process then entered the 
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feature selection mode.  The algorithm constructed for the “detection” phase of the 

process was also applied to allow for the process to continue to the “detection” phase, 

where the models were trained and validated, as depicted in Figure 4.  These procedures, 

as well as those detailed by the SAS Institute, which recommends using a SEMMA 

modeling process, comprised the methods used for building the predictive models.  

SEMMA includes Sample, Explore, Modify, Model, and Assess. The SAS® Enterprise 

MinerTM software package was utilized for this purpose based on the data mining 

methodology described. The SEMMA process is iterative in nature and the repetition of 

variable selection was conducted based on gained familiarity and relationships among 

variables as they were discovered.  Thus, the Model, Modify, and Assess processes was 

repeated as modeling strategies evolved. 

Using the NASA FDM database, this exploratory research extracted aircraft 

performance and position data from flights that were determined to contain evidence of 

an unstable approach.  These data were then loaded into the SAS Enterprise Miner© for 

further analysis.  The SEMMA process was incorporated into the Knowledge Discovery 

phase of the AVSKD model, as depicted in Figure 4.  In the Sample step, data was 

partitioned into training and validation samples with the ratio of 50/50. In the Explore 

step, data was explored to examine missing values, histograms, and outliers. The Modify 

step considered data imputation and transformation as needed.  In the Model step, the 

prepared data was used to construct the models.  Finally, the models were compared 

using the model comparison function found under the Assess menu grouping.  Model 

comparison capability presents multiple performance scores to rank the models; 

misclassification rate, Receiver Operating Characteristic (ROC), and lift curve analysis 
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was then used as the basis for model validation and comparison and are described in the 

Reliability and Validity assessment section below.  

Independent and dependent variables were selected, and model analyses was 

performed as outlined by Sarma (2013).  In the Model step, the data was introduced to the 

models in two steps.  The first step was to train and validate the models using the 2001-

2003 FDR data. The final data set to be introduced was the segregated FDR addresses on 

only those flights that were identified to have indications of unstable approach criteria 

exceedance.  In all steps, the selection of input and target variables was guided by the 

measurable criteria described in FAA AC-120-71A.  Once selected, the same target and 

input variables were used for each unstable approach event throughout the research.  The 

results of each modeling approach were then compared and scored.  

In the Assess step, the performance of each model (decision tree, logistic 

regression, neural network, support vector machine, gradient boost machine, and random 

forest) were assessed for each flight containing evidence of an unstable approach.  

Misclassification rate was used to compare these models.  Although the model with 

lowest misclassification rate was anticipated to be used for determining the best model, 

Truong et al. (2018) assert that ROC and Lift curves can also be used to determine the 

best model if MR rates are not substantially different.  Predictive power of the selected 

model was also evaluated using Lift chart and ROC charts.  The objective of this process 

was to construct a predictive model that could predict the probability of UARM at the 

highest level of accuracy.  A sensitivity and specificity analysis was performed in order 

to determine which percentage of true and false positive occurrences of UARM as well as 

true and false negative occurrences of UARM.  
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Once the models were evaluated and compared and one was identified as most 

accurately representing the probability of UARM, this best model was then used to 

further analysze the relationships between the independent variables to the target 

variable.  It was expected that this investigation could reveal the impact of unknown 

factors to pilot decision making lapses in pilot risk misperception.   

Apparatus and materials.  The FDR data were accumulated, archived, and made 

available by NASA for public aviation research via their DASHlink website.  Subsequent 

materials consisted of several mathematical based algorithms contained in MATLAB® 

software.  The only materials utilized in the study pertain directly to the treatment and 

analysis of the data as described. 

Sources of the data.  This research uses flight data extracted from 35 aircraft 

publicly available from the NASA DASHlink website (NASA, 2012; see 

https://c3.nasa.gov/DASHlink/projects/85/resources/?type= ds).  NASA has accumulated 

de-identified aggregate flight recorded data, giving researchers the ability to proactively 

identify and analyze trends and target resources to reduce operational risks in the 

National Airspace System (NAS) (NASA, 2012).  Permission of the site manager is not 

required to access or utilize the data.  

Ethical Consideration 

This data source provided an opportunity for aircraft operators to examine actual 

flight data from aircraft operating in the NAS.  Access to the data was provided on the 

NASA DASHlink website and contains FDR data from 35 different regional jets, of a 

single type and airline, operating from 2001 to 2004.  The data contained flight 

parameters detailing aircraft dynamics, system performance, and other engineering 
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parameters, but they did not provide any information that could have been used to 

identify a particular airline or aircraft manufacturer. These data were not included in any 

airline FOQA program. The appropriate parties have allowed NASA to provide the data 

to the general public for the purpose of research, in order to promote aviation safety 

(NASA, 2012).  Because the research utilized de-identified archival data, internal review 

board review and approval were not required. 

Aviation Safety Knowledge Discovery Process 

The FDR and all data contained therein were de-identified by NASA prior to 

release for research, hence the archived data measurement device is considered to be a 

valid and reliable representation of FAA certified FDR equipment.  These measurement 

and collection devices provide real time flight data and are measured and collected by 

FDR and CVR devices, as well as the more recently developed Quick Access Recorder 

(QAR).  Walker (2017) asserts that the QAR has developed into a superior data collection 

device and is now considered industry standard.  This development of the QAR has 

enabled data to be conveniently extracted from commercial transport aircraft with recent 

systems integrated into wireless systems (Walker, 2017). 

Categories.  The FAA provides guidance on criteria to be used for unstable 

approach assessment.  The categories of flight variables represent both continuous and 

categorical variables.  For example, continuous variables represent approach speed and 

descent rate.  Categorical variables represent flap and landing gear position information.  

The categories selected for the study were those most appropriate for the exploration and 

investigation of unstable approaches and evidence of UARM.  As described in the review 

of the literature, FAA and SOP guidelines dictate that unstable approaches and the 
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rejected landing decision-making process should be determined by the evidence, or not, 

of an unstable approach.  The assessment required by the pilots is based on flight data 

variables which have been described in FAA AC 91-79A.  The unstable approach criteria 

were based on those flight data variables which constitute three constructs: aircraft 

energy state, aircraft position relative to the landing runway, and landing configuration 

(e.g., landing gear, flaps, speedbrakes/spoilers). 

Variables and scales.  The variables of interest were selected based on the 

measurement of the three constructs used to define and describe an unstable approach, as 

well as the identification of UARM.  A description of literature supporting the selection 

and scale of the variables as well as the dependent variable, is provided in a review of the 

literature in Chapter II.  Table 3 and Table C6 list the variables and scale used in the 

study. 

A target variable, UARM, representing the occurrence of pilots continuing an 

unstable approach to landing was identified and treated as a binary variable.  For 

example, when the aircraft is on approach at 500 feet AGL, an assessment window for 

the pilot to examine specific flight parameters and assess aircraft performance based on 

the FAA stable approach criteria opens.  As part of the landing checklist, the pilot 

monitoring (PM) observes and calls out deviations (if any) on descent rate, approach 

speed, glide path position, localizer, and landing configuration (e.g. landing gear down, 

flaps in landing position, and speed brakes stowed).  In the event that uncorrected 

deviations exist and exceed FAA criteria, a rejected landing maneuver is recommended 

by the FAA and standard operating procedures (IATA, 2017).   
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As defined earlier, UARM occurs if a pilot elects to continue an unstable 

approach to landing.  For the purposes of the quantitative analysis of the data, UARM 

was coded, based on using an arbitrary K-way categorical variable to be expressed as a 

separate possibility, based on each of the K possible outcomes.  The target variable, 

UARM, is a categorical variable, with K equal to two.  Categorical variables with only 

two possible outcomes are known as binary, or dichotomous, variables.  UARM was 

either present (1) or not present (0).  Analyses was conducted such that only g – 1 (g is 

the number of groups, two in the study) was not coded.  The purpose of coding UARM in 

this way was to prevent redundancy while still representing the data set.  In this case, 

with only two groups, the group that was not be coded is the group of least interests, 

when UARM does not occur.  The rest of the flight data variables representing the FAA 

stable approach criteria, were utilized as input variables and were anticipated to be 

continuous or categorical.  For example, approach speed was expected be continuous, 

based on numerical values while landing gear position was expected to be categorical 

(i.e. either up or down).  

Data Analysis Approach and Process 

The NASA FDM data sets were constructed separately by each aircraft tail 

number as large comma separated variable files and was opened using Microsoft Excel© 

2016.  Within each aircraft file, the data was sequentially ordered by year, date, and hour.  

None of the models used require normal distribution of data.  As previously described, 

the AVSKD process provided the framework for data preparation, feature selection, and 

anomaly detection.  The following sections will detail the SEMMA process that was 

applied to the data.  The Stat Explore node in SAS® EM was then used to inspect for (a) 
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outliers, (b) missing values, (c) skewness, and (d) kurtosis.  As an overview, and for each 

aircraft, the data was treated as follows: 

• Download FDM for 2001 to 2003   

• Separately download FDR data for 2004, 

• Train and validate the models using the three 2001 to 2003 data sets, 

• After building and comparing the models, test the models using 2004 data and 

• Score the models using the “Score” function in SAS® EMTM.  

Model steps.  The following sections detail the step by step process of the 

SEMMA procedures that was used to input the flight data into SAS® EM™ for the 

purposes of building, comparing and assessing predictive models.  Specific models 

constructed include: (a) decision tree, (b) logistic regression, (c) neural network, (d) 

support vector machine, (e) gradient boost machine, and (f) random forest. 

Decision tree.  Advantages of decision trees include being based on logical rules 

and the ability to tolerate missing values, non-linear relationships, and are easy to 

interpret.  Disadvantages include being prone to instabilities with a tendency to “over-fit” 

the solution and can be difficult with simple linear relationships (Tufféry, 2011).  A 

decision tree represents hierarchical structures of variables, including the parent node and 

child nodes.  Visual representations represent the presence, or effects of relationships 

between the binary target variable, UARM, and independent variables.  The root node is 

split into two or more branches, based on the condition that best separates the individuals 

of each class.  If the variable is categorical, the branches represent separate classes of the 

root node.  Conversely, if the variable is continuous, then the branches represent specific 

ranges of the node.  At each split, a separation condition was used to determine how to 
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split the parent into child nodes.  This iterative process, referred to as recursive 

partitioning, continued until an assigned termination condition was satisfied. Common 

splitting criteria include: Chi-square, Gini, and entropy (Tufféry, 2011).  Default settings 

were selected based on the coding of the independent variables.  These default settings 

set for decision trees modelled in SAS® Enterprise MinerTM, with a maximum branch size 

were determined by the coding process as well.  For example, initially, the maximum 

depth could be six, with a minimum categorical size of 5.  

The decision tree modelling process involved the application of a series of 

relatively straightforward rules, in which observations are assigned to a segment relating 

the value of a single input variable.  The process was iterative in nature and repeated until 

a hierarchy results.  The resulting hierarchy, or tree, contained the segments, which were 

referred to nodes. The tree root node consisted of the complete data set.  Leaves were 

created from all of the branches with the final node being referred to as the leaves.  A 

decision, or predicted value, was made for all leaf values.  The decision tree (DT) node 

was used to classify observations and for prediction of the occurrence of the target 

variable, UARM.  Advantages of decision tree predictive modelling are that they are 

easily interpreted and handle missing data well.  

Splitting criterion rules were generated using training data in the Decision Trees 

machine learning model.  Once these splitting rules were generated, these rules were then 

used to determine predictions using other data sets.  Splitting criterion rules were then 

validated using statistical significance tests F-test or Chi-square tests.  Gini values, 

reduction in variance, entropy, and P-values could have also been used in the rule set for 

stopping the DT model.  
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As shown in Table 2, the Decision Tree node consisted of the flight variables and 

the target variable, UARM.  The Decision Tree node was appropriate for the binary target 

variable in the study.  Missing values or negative frequency values were excluded and 

were not truncated.  

Tables C1 and C2 provide a detailed description of node functions as applied to 

Decision Tree and Logistic Regression modeling in SAS® EM.  These examples were 

representative of node functions in each of the ML techniques that were used in the 

construction, training, validation, and assessment phases of the AVSKD research model. 

The Variable Importance Table was used to indicate the relative value of the tree 

node output variable importance.  The sum of the squared errors was then used in the 

Decision Tree node for UARM, based on the training data and was indicated with the 

Gini Index. Table C2 lists what the Results of the Decision Tree predictive models. 

The Fit Statistics table displays the statistics for the training, validation, and test 

data sets.  The Classification chart used a bar chart to present the classification results for 

UARM.  The Score Ranking Overlay chart was a presentation of training and validation 

overlay plots based on statistics used to create the model. The horizontal axis displays the 

observation depth.  The curves for the Best Measures represent the model that predicts 

the target correctly. 

The score rankings matrix plot is an overlay of selected statistics for the models 

using training and validation data.  Lift plots were constructed for all reporting variables 

using a Data Partition node.  Best Measures were then used to represent the model with 

the highest predictive probabilities for the observations. 

The Score Distribution chart was used to present model scores based on the 
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prediction of UARM.  The target variable predictions were binned, based on the number 

of buckets, and indicate the best scores for the highest percentage of correct predictions 

and conversely, lower scores for lower percentages of predictions.   

Logistic regression.  In order to predict and explain a binary variable, as opposed 

to a metric dependent measure, logistic regression modeling was utilized.  Similar to 

multiple regression, this form of logistic regression variate can also be used to represent a 

single multivariate relationship, regarding the use of regression-like coefficients to 

represent the significance, or impact, of each predictor variable.  When attempting to 

identify and predict which group a target variable belongs, logistic regression is 

appropriate (Tufféry, 2011).  Because the purpose of logistic regression is the prediction 

of a two-group (g = 2) dependent variable, it was the proper choice for this research and 

was less affected by basic assumptions, such as normality of the variables, than linear 

regression. 

The Regression Node (RN) was used to fit logistic regression predictive models to 

the NASA FDM data set in the AVSKD data processing flow. The purpose of the logistic 

regression modelling was to predict the probability that UARM occurred based on one or 

more effects of the independent variables described in Table 3.   

Prior to building regression models, the data mining tasks were performed as 

described in Figure 3. 

Neural network.  Also commonly referred to as artificial neural networks 

(ANNs), neural networks are data reduction models based on nonlinear regression and 

were developed to replicate features used by the neurological functions of the human 

brain. The basic structure of ANN models is a combination of relatively simple 



117 

 

 

computing elements (neurons or units) into an integrated system.  ANNs can be used to 

predict a target variable in aviation research and can be particularly useful when large 

data is available to train the model, and a mathematical based relationship has been 

developed relating input to output variables.  

Data mining tasks that were accomplished to train the ANN models include:  

• Sample the Input Data — The Sampling node extracts sample data used to train the 

ANN that can be generalized to the data  

• Create Partitioned Data Sets — The Data Partition node is used to partition the data 

sample into training, validation, and test data sets. These sets were then used to 

learn network weights, select architecture, and for model assessment.  The test 

data set was also used to estimate generalization error.  

• Use Only the Important Variables – Prior knowledge was used to select only important 

inputs regarding the target variable.  This step was only be accomplished after 

using the Explore and multi-plot nodes to eliminate bias.   

• Transform Data and Filter Outliers - Transform Variables node was used in the case 

that several transformations are necessary in a single variable.  For example, log, 

exponential, square root, inverse, and square could have been necessary.  

Transformation and optimal binning were also used for target variable 

transformation.   

• Impute Missing Values - The Neural Network node allows for exclusion of missing 

values or if all target criteria are missing. This node was used to replace missing 

values with mean or median values, as necessary.  Dummy variables could also 

have been used (either 0 or 1) as inputs to the ANN model.  
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The Neural Network node was used to train the ANN models.  Training an ANN 

model required an objective function which was the total error combined with a penalty 

function divided by frequency.  Maximum likelihood was used for the statistical 

estimation method and is the negative log likelihood that is minimized, as opposed to 

maximized (Sarma, 2013).  

Advantages of neural networks include the ability to tolerate non-linear data; 

however, they tend to over-fit and are negatively influenced by poor variable selection.  

Neural networks present causal relationships among factors.  Neural network modeling 

was used to incorporate factors included in the FAA unstable approach criteria, the 

outcome of which included not only the prediction accuracy and impact factors, but also 

a causal network of these factors.  A causal network using neural inference modeling is a 

graph of nodes and arcs that form a visual representation of factor relationships.  Each 

node represents a random variable, and an arc represents a direct relationship among 

variables.  The nodes can either be continuous or discreet and represent variables of 

interest.  Each node represents an association of probability distribution, and the 

relationships among the nodes are described by conditional probability distributions 

(Truong, Friend, & Chen, 2018).  

Support vector machine. The High Performance (HP) SVM Node was used to 

build predictive models and was advantageous because it was able to handle binary, 

ordinal, nominal and interval input variables and one binary target variable.  Data with 

missing values was ignored (Tuffery, 2011). Tuffery (2011) describes the selection of the 

optimal hyperplane used to mitigate the infinite possible classification solutions in the 

case of linear separated observations.  The selection of the optimal hyperplane influences 
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both the correct fit and robustness of the model.  The optimal hyperplane also maximizes 

the width of separation between observations, with points on the boundaries of separation 

known as support points or vectors.  In the case that observations could be clearly 

separated a classification error could have been added to the separation term. 

Tuffery (2011) presents advantages of SVM models including: ability to use a 

kernel function to model non-linear phenomena, high degree of predictive precision, and 

robust modeling capability due to the use of an optimal hyperplane.  Tuffery (2011) also 

lists disadvantages of SVMs as: a lack of transparency, sensitivity to kernel selections, 

and lengthy computational time, possibility of overfitting.  

The HP SVM node menu included the following options: Node ID, import, 

browse, explore and properties.  Additional menu options were similar for other models, 

with key differences in the interior point options which allowed for a choice of kernel or 

polynomial functions to be selected.  Kernel options allow for separation of observations 

using linear functions while the degree of polynomial functions could have been selected 

instead.  For a detailed description of steps in the SVM model see Table C5. 

Gradient boost machine.  The Gradient Boosting Node was used to partition the 

data based on an algorithm that detected values for the target variable, UARM.  The 

algorithm assigned weights to partitioned data, with weights varying with target variable 

similarity, using recursive partitioning. The predictive model was then constructed based 

on a combination of the partitioned data.  The model was then evaluated based on the 

target variable goodness of fit statistics, rather than the individual partitioned data sets.  

This combination of partitioned data sets was expected to create a better model than was 

possible with the combination of partitioned data sets. 
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GBM modeling utilized resampled data sets in an iterative process to produce 

output that was based on a weighted average of the re-sampling.  GBM is similar to DT 

boosting which combines a group of trees to form one predictive model.  A residual is 

expected to result from each DT, which could have then been fitted to the previous tree 

and could have been defined regarding a derivative of a loss function.  Because the target 

variable was binary, logistic loss, or negative binomial log-likelihood represented the loss 

function.  

Results menu options are displayed in the same manner detailed in the DT 

modeling process detailed in Table C2.  The GBM node allowed two different process 

techniques regarding variable importance assessment: split-based and observation-based. 

The split-based technique utilized a reduced value in the summation of squares based on 

all nodes that were used. The observation-based technique was based on an increase in fit 

statistic value.  This technique addressed the decrease in value usually associated with 

correlated values. 

Random forest.  The HP Forest node was used to construct predictive models 

combining trees and was referred to as a forest.  Training was achieved in random forest 

(RF) models using a random sampling of all possible input variables in the splitting node.  

Additionally, sampling training data did not use replacement in any observations.   

One advantage of RF modeling was that RF models were adept at handling 

binominal, categorical target variables.  In this case, posterior probabilities within the RF 

model were achieved through the average of posterior probabilities of individual DT 

models to predict target variable probability.  The HP Forest Node was also used to 

predict the probability of target variable observation by voting on the category that the 
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individual DT models most often predicted.   

Another advantage of RF modeling was that by averaging DT models with 

different training samples, predictions on one particular training sample are minimized.  

This out-of-bag sample was more reliable than individual DT models.  Additionally, 

overfitting, a common problem with DT models was minimized in RF modeling and 

decreased overfitting the sample.   

Options in the HP Forest node menu included: Maximum Number of Trees, 

Number of Variables to Consider in Split Search, and Proportion of Obs in Each Sample. 

“Number of Variables to Consider in Split Search” was an option within the HP Forest 

node which could have been scaled to select the number of input variables to be 

considered in the RF model (See Table C7 for a descriptive list of the HP Forest node). 

Bagging is a term associated with the HP Forest node.  This term refers to the 

term “bootstrap bagging” when replacement sampling was used.  Observations in the 

training sample was then referred to as “bagged” samples when associated with a specific 

DT.  

The HP Forest node was assigned observations to a single leaf in each DT model 

in the forest.  The individual DT model was then used to make a prediction on the target 

variable.  The HP Forest node then averaged all of the individual predictions.  For the 

target variable, UARM, the posterior probability was expected to the proportion of the 

category in the bagged training observations (see Table C7 for a descriptive list of the 

“Results” options). 

Model comparison.  The Model Comparison function in SAS Enterprise Miner© 

provided a reliable and valid reference for initial results and could have been used to 
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interpret potentially inconsistent criteria across the multiple models being analyzed.  In 

the research, under assessment reports, the number of bins was initially set to 20, a ROC 

chart was selected, and the selection statistic employed was set to cumulative lift.  The 

model output results for each selected event were then reported based on 

misclassification rate for the validation data, rather than ASE.  Although ASE was a 

preferred model diagnostic because it provided common estimates of performance for the 

predictive modeling, because the target variable, UARM, is binary, misclassification rate 

was more appropriate.  In the cases where the target variable (UARM) was binned (e.g., a 

multinomial logistic regression) statistics such as misclassification rate or a confusion 

matrix for class variable outputs were used to determine the best model (Sarma, 2013). 

For the study, the basic data mining outputs were:  

• Misclassification rate for validation data, ROC and Lift chart 

• Relative variable worth for each variable  

Scoring.  The models were tested by using a scoring technique.  SAS® scripts 

were then created using the Score assessment function and a different data set was loaded 

to test the model predictive capability.  The Score Node was used to manage the scoring 

process of the models.  Scoring was accomplished with the generation of a scoring code 

that was produced from training runs of each model.  The scoring code was then used to 

assign a score to the data set which in turn resulted in the creation of predicted values 

regarding the probability prediction of the target variable, UARM.  The results of scoring 

were then reported using scoring tables.  Scoring tables listed both input and output 

variables.  The score node train properties function in SAS allowed for flexibility in the 

selection input variables.  The Explore window enabled the selection among several 
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menu options; however, because of the exploratory nature of the research, initial training 

runs were executed by accessing the entire list of 186 flight data observation values for 

input by the score node.  Output variables were created by the score code.  Once training 

runs were completed, input data was introduced from a later range of dates (e.g., 2001-

2003 aircraft data) and were evaluated using the models developed from these data sets. 

Descriptive statistics  Representative descriptive statistics were determined, they 

were segregated into class and interval variables.  The FDR descriptive statistics were 

listed in appendices and tabulated for ease of observation.  The descriptive statistics were 

further explored and presented along with the data mining results.  Frequency statistics 

describing total number of approaches, number of unstable approaches, and rejected 

landings are also provided.  Additionally, descriptive statistics pertaining to the flight 

variables comprising the three unstable approach constructs were provided, including 

mean, SD, and histogram presentations.   

Reliability assessment method.  With the data mining approach used in this 

research, reliability is strongly determined by the quality of the quantitative input data.  

Because these data have been collected using previously FAA certified recording devices, 

the data were considered to be reliable.  Because the data source had been considered as 

credible, reliability testing consisted of the evaluation of the results in the different 

machine learning techniques to be utilized.  Results were compared between training and 

validation samples using misclassification rates, ROC charts, Cumulative Lift charts and 

leaf statistics for all models used in the study.  Similar results were observed in each of 

these techniques.  Thus, reliability was demonstrated when the FDR data was analyzed in 

different models with similar results (Tuffery, 2011). 
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Validity assessment method.  Mathews et al. (2013) assert that once anomalous 

events are detected using the knowledge discovery algorithm, validation is generally 

performed in three ways: (a) domain expert input, (b) ASRS pilot narrative reports, 

and/or (c) pilot interviews.  As the AVSKD process was validated in previous research, 

domain expertise is represented by using FAA guidelines as the basis of feature selection.  

One advantage of using FAA unstable approach criteria was that any potential bias was 

eliminated regarding feature selection.  

In order to perform validation assessment using SAS Enterprise Miner, the data 

sample was partitioned into training, validation, and test.  The training data was used to 

develop the models.  The validation data set was used to validate the models and then to 

select the best one.  The test data set was used for an independent assessment of the 

selected model (Sarma, 2013).  Additionally, the score assessment function was used to 

further enhance the validity of the results.  Using the score assessment function, a SAS® 

scripts technique was created and a different data set was loaded to test the model 

predictive capability. 

In the development of predictive models, validating the models was important for 

the results to be generalizable and reliable.  Further details involving the process of 

feature selection, data partitioning, and the iterative nature of training and validating the 

models are described in the SEMMA process application section of the study.  The model 

comparison node was used to compare the models.  Misclassification rate, Receiver 

Operating Characteristic (ROC) curves, and Cumulative Lift (CL) charts are among 

assessment techniques that were used to evaluate the models.  ROC charts were 

developed in the 1940’s to evaluate and compare predictive models.  ROC charts provide 
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a visual depiction distinguishing between true positive and true negative predictions of 

the target variable.  Cumulative Lift charts provide a visual depiction of the percent of 

captured responses within each percentile bin to the average percent of responses for each 

model.  CL charts provide a visual representation that depicts the advantages of using the 

model over the random prediction of the target variable without the use of predictive 

modeling.  Misclassification rate is a measure of accuracy of the model, or how well the 

model correctly predicts UARM.  Truong, Friend, and Chen (2018) describe how 

misclassification rate can be used to ensure validation accuracy of prediction.  Because 

the misclassification rate = 1 – (validation accuracy), lower misclassification rates 

indicate higher validation accuracy.  The researchers continue to describe how a ROC 

curve indicates validity using the validation data ROC curve.  For example, the ROC 

curve indicates the contrast between sensitivity and specificity.  Sensitivity depicts the 

probability of UARM, while specificity reflects the probability of UARM not occurring.  

The ROC curve was compared to the baseline straight line, and this comparison was used 

to provide an assessment of the best predictive model. In the ROC chart, random 

selection is represented by a diagonal line (line of no discrimination) which divides ROC 

space into good classification performance (above) and poor classification performance 

(below).  The area under the curve (AUC) equals probability randomly chosen positive 

results higher than a randomly chosen negative instance.  Larger AUC indicates stronger 

predictive power of the model.  CL charts show a comparison between random prediction 

and model predictive performance.  A horizontal line intersecting the y-axis at one 

depicts random prediction with no model. 
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Summary 

NASA has provided public access to FDR data, which was gathered from 35 

regional jets operating in the NAS from 2001-2004.  Data mining techniques were 

utilized to address the nature of the research.  Specifically, the AVSKD process provided 

the framework for the treatment of the data as well as the discovery of unstable 

approaches and evidence of the occurrence or the absence of UARM.  The SEMMA 

process was then be applied to the data, with the construction and evaluation of predictive 

models.  These NASA FDR data were modeled using: (a) decision trees, (b) neural 

networks, (c) logistic regression, (d) SVM, (e) RF, and (f) GBM predictive models.  

Model performance was compared and tested, with the goal of predicting the probability 

of UARM in the event an unstable approach occurs.  Once the models were analyzed, a 

determination of how DM techniques could be utilized to predict UARM, and which are 

the most that contribute to the probability of UARM, was determined.  
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CHAPTER IV 

RESULTS 

FDR data were achieved and made available by NASA for public use.  These 

FDR data were collected from a fleet of 35 regional jets operating in the NAS from 2001 

to 2004.  The research was based on the ability to use 2001 to 2003 FDR data to train and 

validate the machine learning-based models and used 2004 FDR data to score the 3 

branch DT model.  An FDR data set consisting of 2001, 2002, and 2003 data was used to 

construct (a) decision tree with 2, 3 and 5 branches, (b) logistic regression, (c) neural 

network, (d) support vector machine, (e) gradient boost machine, and (f) random forest 

models.  A model comparison was used to determine that the 3 branch Decision Tree 

model had the highest predictive power, with a 98.8% prediction score.  Once DT was 

determined to be the highest scoring model, it was used to run 2004 FDR data in order to 

(a) determine the predictive probability of the target variable, UARM, and (b) rank input 

variables in order of importance.  

The combined 2001, 2002, and 2003 data sets were partitioned 50/50 percent to 

train, validate, and compare the performance of all of the models.  2004 data was then 

used to score the DT (3 branches) model by using the Score node within the SAS® 

EM™.  The 2004 scored data resulted in predictive probabilities of UARM that were then 

compared with the actual UARM instances that were observed in 2004.  These results are 

included in subsequent sections of this chapter.  

Mathews et al. (2013) asserted that once anomalous events are detected using the 

knowledge discovery algorithm, validation is generally performed in three ways: (a) 

domain expert input, (b) ASRS pilot narrative reports, and/or (c) pilot interviews.  As the 
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AVSKD process was validated in previous research, domain expertise was represented by 

using FAA guidelines as the basis of feature selection.  One advantage of using FAA 

unstable approach criteria was that any potential bias was eliminated regarding feature 

selection.    

As part of the model training and validation process, various combinations of 

input variables were selected for testing.  The first variable input combinations used all of 

the flight data variables available in each of the data sets used.  Variables in the data set 

used to describe aircraft specific FMS software version updates, as well as date and time 

data, were rejected in early iterations.  The iterative process dictated that subsequent 

model construction was based on feature selection using estimates of variable 

importance.  For example, initial runs resulted in MNS (selected Mach speed) included in 

the predictive modeling process.  Selected Mach was determined to be a variable 

associated with the cruise (enroute) flight phase, and was not determined to be associated 

with, or relevant to, the approach and landing phases of flight (a delimitation in the study 

used to develop the UARM algorithm).  Therefore, MNS was rejected in further 

iterations of the model runs.  Ultimately a predictive power score of 98.8% was achieved 

with the highest scoring model, 3 branch DT.  Additionally, variable importance 

regarding the occurrence of UARM was determined and is reported in tables listed in 

subsequent sections of this chapter. 

Demographics 

Information in this section presents data regarding the sample aircraft in the 

research and the population of commercial transport airplanes in the domestic NAS.  

Although the recorded flight data made available by NASA were de-identified to specific 
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aircraft type, the flight data variables included in the data sets were sufficient to make a 

comparison between the sample aircraft in the study and the population of commercial 

airplanes in the U.S.  Demographic information regarding commercial transport aircraft is 

presented both at the time the sample aircraft flight data was recorded as well as 

projections based on growth and operational use into the future.  

A comparison of the flight data from sample aircraft used in the research to 

demographic data of the population of commercial transport aircraft was conducted.  The 

comparison results indicate the aircraft used to gather flight data in the research were 

representative of those in the population of commercial transport aircraft, as described by 

Vértesy (2017). For example, engine data samples indicate four sets of turbine-powered 

engine parameter data.  The aircraft data indicated retractable landing gear, multi-place 

flaps and slats, and digital flight controls.  Additionally, avionics data are sampled which 

describe an advanced commercial transport category aircraft.  Pilot flight control data 

indicate a two-pilot configuration with two control yokes, two rudder position indicators, 

and dual primary flight displays.  Aircraft state data representing airspeed, altitude, 

pressurization, and avionics are typical of advanced commercial category aircraft.  

Pressure altitude and indicated airspeed data indicate that the sample aircraft operated 

within the same standard flight envelope as the population of commercial transports 

aircraft. Although payload and range data were not specifically provided, fuel flow and 

average flight segment time were used to estimate these data.  

In the late 1990s and early 2000s, the industry standard description of regional 

jets was summarized in FAA AC 150/5325-4B, Runway Length Requirements for Airport 

Design (FAA, 2005).  In this document, the FAA described an RJ as “a commercial jet 
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configured for 100 passengers or less” (p. 1).  Wong, Pitfield, and Humphreys (2005) 

agreed that there was no universally accepted definition of RJs, and in their study, refined 

the FAA position, asserting that RJs should be defined as jet powered aircraft built after 

1992 with fewer than 100 passenger seats.  Subsequent developments in commercial 

transport aircraft technologies have resulted in a newer generation of RJs that have grown 

in (a) size, (b) passenger configuration, (c) maximum takeoff weight, and (d) range 

(Vértesy, 2017).  As RJs evolved, so did the industry standard description.  Brueckner 

and Pai (2009) described RJs as a unique combination of several attributes, including (a) 

approximately 70 passengers, (b) typical range of approximately 1500 nautical miles, (c) 

high cruising speed compared to mainline jets (over 500 mph), and (d) passenger 

amenities and comfort similar to mainline jets (Brueckner & Pai, 2009).  As technology 

and industry leadership changed, so did industry standards on RJ categorization.  Curtis, 

Rhoades, and Waguespack (2013) challenged the traditional definition as larger RJs 

began to come into service.  The researchers asserted that newer aircraft, such as the 

Embraer E190, E195, and Bombardier CS100/300 series transport aircraft (with 

passenger configurations of approximately 130 seats) shared similar traits to smaller 

Boeing and Airbus products, although Airbus and Boeing transport aircraft were not 

considered to be RJs (Curtis, Rhoades & Waguespack, 2013).  Vértesy (2017) supported 

a broader contemporary definition with the claim that RJ are “a turbofan-engine-powered 

aircraft carrying typically 30 to 120 passengers at a range up to 2000-2500 nautical 

miles” (Vértesy, 2017, p. 389). 

The FAA (2017b) predicted commercial aircraft in the U.S. would grow from 

7,039 in 2016 to 8,270 in 2037, an average annual growth rate of 0.8 percent a year. 
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These demographic data include narrow body fleet growth at a rate averaging 37 aircraft 

a year, while the number of wide-body aircraft is forecast to grow by an average of 17 

aircraft a year in the same timeframe.  The FAA also claimed that the U.S. carrier wide-

body fleet will increase by 67 percent over the years 2016 to 2037 (FAA, 2017b.  Vértesy 

(2017) attributes these demographic changes to three factors: (a) windows of opportunity 

provided by mainline pilot scope contractual issues, (b) strategic responses to rising fuel 

prices and more efficient engine technology, and (c) leadership changes involving 

regulatory policies including loans to support new aircraft development and export-

financing regimes (Vértesy, 2017). 

The FAA (2017b) integrated RJ demographic data into projected numbers of U.S. 

commercial aircraft with the assertion that the regional aircraft fleet is forecast to decline 

from 2,156 aircraft in 2016 to 2,027 in 2037.  The FAA stated that the one of the factors 

involved in this decrease is the trend of carriers to remove 50 seat regional jets and retire 

older small turboprop and piston aircraft, while adding 70-90 seat jets.  The FAA 

continued to claim that by 2037, the number of turbojet powered RJs should total 1,828, 

up from 1,637 in 2016.  Conversely, the turboprop/piston regional aircraft fleet was 

forecast to decrease by 62% from 519 in 2016 to 199 by 2037.   Figures 9 and 10 depict 

FAA gathered RJ demographic data. 
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Figure 9. U.S. carrier fleet. Reprinted from “FAA Aerospace Forecast, Fiscal Years 
2017-2037,” by Federal Aviation Administration, 2017b, p. 29. Retrieved from 
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/fy2017-
37_faa_aerospace_forecast.pdf 
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Figure 10. U.S. commercial air carrier domestic enplanements by carrier group. 
Reprinted from “FAA Aerospace Forecast, Fiscal Years 2017-2037,” by Federal Aviation 
Administration, 2017b, p. 10. Retrieved from 
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/fy2017-
37_faa_aerospace_forecast.pdf 
      

BAC (2017) and DVBank (2019) include maximum range and maximum takeoff 

weight in the classification of commercial transport aircraft.  Figure 11 provides payload 

and range demographic information on the population of worldwide regional jet 

operations in 2018-2019.   
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Figure 11. Regional jet payload-range data in 2017. Certified jet airplanes greater than 
60,000 pounds maximum gross weight.  Reprinted from “An Overview of Commercial 
Aircraft 2018-2019,” Aviation Research, 2019. Copyright 2019 by DVB Bank, p. 163.  
Source: https://www.dvbbank.com/~/media/Files/D/dvbbank-corp/aviation/dvb-
overview-of-commercial-aircraft-2018-2019.pdf  
 

Mozdzanowska and Hansman (2005) provide research describing the economic 

and operational significance of RJ integration into the NAS in the late 1990’s to early 

2000’s (timeframe of aircraft operations in the research). The researchers analyzed and 

compared flight operational data between RJs and mainline jets and turboprops.  Results 

of the study indicate that, in 1998, U.S. regional jet operations closely resembled those of 

turboprops.  However, by January 2003, RJs began to fill a gap in the NAS by flying 

longer routes than turboprops but shorter routes than narrow-body mainline jets.  The 
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researchers conclude that RJs’ cost per trip was very similar to traditional jet costs when 

trip length was normalized (Mozdzanowska & Hansman, 2005).  

Figure 12 presents a data comparison between the number of unstable approaches 

observed from sample aircraft flight data and the number of unstable approaches reported 

by industry sources as presented in previous sections.  Based on the comparison, it was 

concluded that the sample aircraft flight data in the research were representative of the 

population of U.S. commercial transport aircraft. 

  

Figure 12. Unstable approach data comparison.  
Note. Data for IATA from IATA (2017), for FAA from FAA (2015), for NTSB from 
NTSB (2019), for FSF from FSF (2009), for LOSA from Moriarity and Jarvis (2014), 
and for SA from NASA Dashlink (2012).  Dashed box highlights Sample Aircraft Data. 
IATA=International Air Transport Association, FAA=Federal Aviation Administration, 
NTSB=National Transportation Safety Board, FSF=Flight Safety Foundation, 
LOSA=Line Observation Safety Audit, SA=Sample Aircraft.  
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UARM Algorithm Development 

 

One of the most important objectives of the study was to develop an algorithm for 

the target variable, UARM.  In order to successfully accomplish this task, it was first 

necessary to identify unstable approaches within the data.  Initial examination of the data 

indicated the recorded flight data contained variables that could be used to represent FAA 

exceedance criteria for unstable approaches.  Results of this determination also indicated 

that flight data variables could be used to develop the algorithm for UARM.  Once this 

determineation was made, a coding process was developed to create a data variable 

representing landing, rejected landing, and UARM.  One important step in this process 

was the development of assessment criteria limitations as presented in subsequent 

sections.  For example, weight on wheels (WOW>0) was used to determine if a landing 

(or rejected landing, WOW=0) was accomplished.  Exceedance of any of the flight 

variables used in the construction of stable approach criteria (engergy state, landing 

configuration, location relative runway) was successfully used to determine if an unstable 

approach was evident.  These variables used to identify unstable approaches were 

selected based on the measurement of these three constructs used by the FAA to define 

and describe an unstable approach.  A straightforward If/Then decision process was then 

developed and used to complete the UARM algorithm (See Figure 8).  Results of this 

If/Then assessment process were successful in the discovery that evidence of UARM had 

occurred or not.  For example, once an unstable approach was identified, a determination 

was made whether or not a rejected landing was performed.  If evidence of an unstable 

approach was indicated, and a rejected landing was not performed, then UARM resulted.  



137 

 

 

Results of this UARM algorithm development were then successfully used to construct 

predictive models as well as the identification of UARM.  The rest of the flight data 

variables, including those representing the FAA stable approach criteria, were utilized as 

input variables and were anticipated to be continuous or categorical.  For example, 

approach speed was expected be continuous, based on numerical values while landing 

gear position was expected to be categorical (i.e. either up or down).  Sarma (2013) 

described the process of binning to classify continuous variables in a categorical manner. 

An important result of the data coding process was the successful transcription of 

the NASA provided MATLAB data into EXCEL for importation into SAS® EM™.  

Initial coding of the FDR data was accomplished with the construction of two separate 

data sets in EXCEL format.  The first data set consisted of 2001, 2002 and 2003 flight 

data.  The second data set consisted of 2004 flight data.  The three-year data set was 

partitioned into training and validation samples and subsequently was used to perform a 

model comparison to determine the best performing model. The 2004 data set was then 

used to score the model which was determined to be the best preforming model based on 

the model comparison.  

An important aspect of the UARM algorithm development was that of feature 

selection.  The iterative process was used to reject or accept flight data variables based on 

decision making rules established and described in the UARM algorithm.  In order to 

preclude selection bias, FAA stable approach criteria were used to identify flight data 

variables which represented stable approach assessment.  Results indicated that the 

Explore node was quite useful in the iterative process of feature selection.  For example, 

because unstable approach was a prerequisite for UARM, it was obviously a predictor of 
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the occurrence of UARM.  Accordingly, failure to reject the landing during an unstable 

approach was also a prerequisite for UARM and was therefore anticipated to be present 

in 100% of UARM occurrences.  One key element in the development of the UARM 

algorithm was the ability to make the important distinction between the identification and 

analysis of unstable approaches and the ability to successfully predict the probability of 

occurrence of UARM.  For example, exceedance of approach speed criteria at the 

assessment point would be an indication of an unstable approach, but not necessarily an 

indication of the probability of the occurrence of UARM if the pilot rejected the landing.   

Results indicated that one advantage of the UARM algorithm was that of 

scalability.  Several different predictive models successfully utilized the UARM 

algorithm with the application of recorded flight data.  Results demonstrated that real 

world recorded flight data was successfully assessed in the UARM algorithm process to 

predict the probability of occurrence of the target variable.  The UARM algorithm was 

successfully used repeatedly with consistent results to evaluate large recorded flight data.  

The algorithm was successfully developed based on initial data coding, subsequent use of 

an If/Then decision-making process, and ultimately the extremely accurate and precise 

predictive power regarding the target variable, UARM.  The UARM algorithm provided a 

step by step, repeatable process to the analysis of recorded flight data and allowed for a 

reliable and valid methodology for the analysis of FDR data to predict UARM.  Evidence 

of successful employment of the UARM algorithm is presented in subsequent sections. 

Descriptive Statistics 

The recorded flight data variables were initially processed by SAS™ EM® using 

the STAT EXPLORE node.  As part of the feature selection process, variables were 
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examined for relevance to the analysis of unstable approaches and rejected landings.  

Several variables were rejected for analysis based on relevance to flight analysis.  For 

example, DVER_1 represented the database version that the FMS used and was not 

included in the predictive model building process.  The complete list of flight variables 

are listed in Table C6. 

 The recorded flight data was then examined for evidence of unstable approaches.  

Using FAA exceedance criteria as previously described, unstable approaches were 

extracted and examined for causal factors (i.e., exceedance of FAA flight parameters).  

Flight data variables associated with FAA unstable approach exceedance variables were 

also examined to determine frequency data.  Frequency data for approaches and 

occurrence of UARM is presented in Table 4.  Although assumptions of normality and 

multicolliniarity were not required to be met for the machine learning algorithms utilized 

in predictive model building, the exceedance criteria variables were examined for general 

consistency and to better visualize the data.  Results of the descriptive analysis are 

presented in Table 5.  Fight data variable exceedances are summarized in Table 6.  

Exceedance criteria for glideslope deviation was observed most frequently, landing 

configuration deviations second (power levers at idle, engine thrust not stable) with 
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localizer deviation (lateral distance from extended runway centerline) third most 

frequent.    

Table 4 

Summary of Recorded Flight Data Approach Frequencies 

Approach Classification N Percentage  
Total Approaches 152,442  
Unstable  11,348 7.44 
Stable 141,094 92.6 
Rejected Landings 450 0.29 
Landings 151,992 99.7 
UARM 11,047 7.24 

Source: Adapted from “Sample flight data for 35 aircraft,” by National Aeronautics and 
Space Administration DASHlink, 2012. Retrieved from 
https://c3.nasa.gov/DASHlink/projects/85/resources/?type=ds.  Note. UARM=Unstable 
Approach Risk Misperception. 
 
Table 5 
 
Summary of Unstable Approach Criteria Descriptive Statistics 

 
Variable N  Missing M (SD) Min Max Skewness  Kurtosis 

IVV 33 0 -659 (109) 029 1675 0.280 17.4 
GS 349 0 119(12.1) 104 179 6.452 180 
ALTR 34 0 -670 (204) 005 1685 0.097 10.5 
CAS 456 0 124 (7.61) 104 179 1.25 159 
LGDN 359 0      
PLA 3124 0      
FLAP 64 0      
DA 383 0 0.34(0.041) 0.02 5.5 -0.517 27.2 
LOC 2742 0 0.071(0.020) 0.001 1.7 -2.02 52.4 
GLS 4338 0 0.082(0.003) 0.001 2.6 -1.83 30.4 

Note. LGDN, PLA, and FLAP are categorical variables, and are presented for 
informational purposes in order to include the complete list of unstable approach criteria 
variables. IVV = Inertial Vertical Velocity. FPM = Feet Per Minute. GS = Ground Speed. 
ALTR = Altitude Rate. CAS = Calibrated Airspeed. LGDN = Landing Gear Down. PLA 
= Power Lever Angle. DA = Drift Angle. LOC = Localizer. GLS = Glideslope. SD = 
Standard Deviation. 
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Table 6 

Summary of Unstable Approach Flight Data Variable Exceedance Frequency 

 
Unstable Approach Construct Flight Data Variables Exceedance Frequency 

Energy State 

IVV 

GS 

ALTR 

CAS 

33 

349 

34 

456 

Landing Configuration 

LGDN 

PLA 

FLAP 

359 

3124 

1159 

Relative Runway Location 

DA 

LOC 

GLS 

383 

2742 

4338 

Source: Adapted from “Sample flight data for 35 aircraft,” by National Aeronautics and 
Space Administration DASHlink, 2012. Retrieved from 
https://c3.nasa.gov/DASHlink/projects/85/resources/?type=ds. Note. IVV = Inertial 
Vertical Velocity. FPM = Feet Per Minute. GS = Ground Speed. ALTR = Altitude Rate. 
CAS = Calibrated Airspeed. LGDN = Landing Gear Down. PLA = Power Lever Angle. 
DA = Drift Angle. LOC = Localizer. GLS = Glideslope. 
 

Data Exploration  
 

The Explore component of the SEMMA process initially included the variable 

importance analysis of the entire data set using the Stat Explore node.  Chi-square was 

used to determine the variable importance in this step of the process.  Sarma (2013) 

describes the primary purpose of the Stat Explore node as to make a preliminary 

assessment of the importance of input variables regarding strength of relationship with 
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the target variable.  SAS™ EM® software was used to rank flight data variables in order 

of importance to the occurrence of UARM.  SAS™ EM® defined variable importance as 

the rank order (from 0 to 1) of input variables determined by the Chi-square statistic and 

described the strength of the relationship between categorical input variables and the 

target variable.  SAS™ EM® used binning to derive categorical input variables from 

continuous input variables (Sarma, 2013).   

Variable importance analysis provided an indication of which predictor variables 

could be considered most useful in the prediction of UARM; conversely, those variables 

deemed not relevant to the analysis of unstable approaches and/or UARM were rejected.  

The Explore process was iterative in nature and began with the exploration of the entire 

186 variable data set.  The purpose of the exploration of the data was to become familiar 

with which variables were most relevant to the study and to iteratively exclude variables 

unrelated to, or irrelevant to the prediction of UARM.  For example, if flight data 

variables that defined UARM (unstable approach, landing or rejected landing) were not 

rejected they would by default be artificially ranked at the top of the variable importance 

list because they occurred 100% of the time that UARM occurred. 

• Initial data exploration indicated that several of the recorded flight data 

variables were unrelated to flight operations and were rejected on the first 

iteration.  For example, variables associated with nomenclature (date, 

time, tail number) were rejected.  Also, variables associated with FMS 

software version nomenclature were rejected. 

• Subsequent iterations resulted in the rejection of variables which were 

prerequisites for UARM.  For example, prerequisites to UARM include 



143 

 

 

unstable approach, landing, or rejected landing; therefore, those variables 

representing unstable approach and rejected/not rejected landing were 

excluded.  The purpose of rejecting these variables was to preclude 

construct bias from the predictive model construction process. 

• The latest iterations resulted in the rejection of the following variables: 

selected Mach and engine compressor speed.  Although these variables 

indirectly represent data which may or may not be important to unstable 

approaches, they were determined not to be relevant to phases of flight 

included in the study (approach and landing) and were therefore excluded 

from analysis. 

• Based on the iterative nature in the Explore component of the SEMMA 

process, three variables were outstanding regarding importance (strength 

of relationship with the target variable, UARM: (a) auto-throttles off 

(A_T), (b) flaps not extended (FLAP), and (c) airbrakes deployed 

(ABRK). 

Model Reliability and Validity 

Reliability assessment. With the data mining approach used in this research, 

reliability was strongly determined by the quality of the quantitative input data.  Because 

these data have been collected using previously FAA certified recording devices, the data 

were considered to be reliable.  Because the data source was considered as credible, 

initial reliability testing consisted of the evaluation of the results in the different machine 

learning techniques to be utilized.  Reliability was demonstrated when the FDR data was 

analyzed in different models with similar results (Tuffery, 2011).  Reliability assessment 
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of the best performing model, DT with 3 branches, was also performed separately using 

the 2004 FDR test data set to construct ROC and Cumulative lift charts.  The reliability 

analysis with the test data set is presented in subsequent sections. 

Model reliability in predictive modeling was also demonstrated with the 

comparison between training and validation partitioning.  In order to perform the 

reliability assessment of the models, the data samples were partitioned into training and 

validation samples using the data partition node in SAS EM.  Similar results between the 

training and validation partitioned samples indicated high reliability of the models.  

Comparison between training and validation characteristics are presented for the best 

model, decision tree, in Figure 13, as well as for the models evaluated in the model 

comparison, in Figures 14 and 15.   

 

Figure 13. Cumulative Lift Characteristics Chart for DT Train and Validate Comparison. 
A presentation of relative performance between training and validation data samples. 
 

The close approximation between the training and validation data indicated the validity of 

the DT model.  Additionally, misclassification rate comparison data between training and 
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validation samples for the decision tree model are presented in Table 7.  Similar values 

between training and validation data provided additional indications of the validity of the 

DT model. 

Table 7 

Decision Tree Misclassification Rate Training and Validation Comparison 

 Train Valid 
MR 0.0028 0.0036 
ASE 0.0026 0.0036 

Note. MR=Misclassification Rate. ASE=Average Square Error 

Validity assessment. The validity of the model was assessed based on model 

prediction accuracy using MR, accuracy, sensitivity and specificity.  Additionally, 

predictive power assessment was used to demonstrate validity using ROC and CL charts.  

Examples of the validity assessment are presented in Figures 17 through 21. The score 

assessment function was used to further enhance the validity of the results.  Using the 

score assessment function, a SAS® scripts technique was created and a different data set 

was loaded to test and validate the model predictive capability.   

In the development of predictive models, validating the models was important for 

the results to be generalizable and reliable.  Further details involving the process of 

feature selection, data partitioning, and the iterative nature of training and validating the 

models were described in the SEMMA process application section of the study.  The 

model comparison node was used to compare the models.  Misclassification rate and 

Receiver Operating Characteristic (ROC) curves were two assessment techniques used to 

evaluate the models.  Truong et al. (2018) describe how misclassification rate can be used 

to ensure validation accuracy of prediction.  Because the misclassification rate = 1 – 
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(validation accuracy), lower misclassification rates indicate higher validation accuracy.  

The researchers continue to describe how a ROC curve indicates validity using the 

validation data ROC curve.  For example, the ROC curve indicated the contrast between 

sensitivity and specificity.  Sensitivity depicts the probability of UARM, while specificity 

reflects the probability of UARM not occurring.  The ROC curve was compared to the 

baseline straight line, and this comparison provided an assessment of the best predictive 

model. Figure 14 presents a comparison of the training and validation scores.  Similar 

ROC curve analysis results discovered in the training and validation data suggest the 

model was valid.  Figure 15 provides a graphical description of the Cumulative Lift 

characteristics validation and train data that also support model validity.  Further validity 

assessment was conducted separately on the champion model, DT with 3 branches, using 

the 2004 test data set and is presented in the next section describing the champion model 

performance. 
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Figure 14. Receiver Operating Characteristics Chart for Train and Validate Comparison. 
A demonstration of relative performance between models.  The straight line was a 
baseline and larger the area under the curve, the better the performance of the model. 
Vertical Axis contains sensitivity, or true positive fraction values. Horizontal axis 
contains specificity, or false positive fraction values for training and validation data.  
Similar results between training and validation data charts indicated consistency of model 
performance. 
 

 

Figure 15. Cumulative Lift Chart for Train and Validate Comparison.  A demonstration 
of relative performance between models. 
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Model Building and Evaluation 

Six machine learning-based prediction models were constructed to predict the 

probability of UARM occurrence: (a) support vector machine, (b) gradient boost 

machine, (c) random forest, (d) neural network, (e) decision tree with 2, 3 and 5 branches, 

and (f) logistic regression.  SAS® EM™ model diagrams were constructed containing the 

machine learning-based models and is depicted in Figure 16.  The diagram constructed to 

train and validate the models contained: (a) the data set with variables representing the 

recorded flight data from years 2001-2003, (b) the Stat Explore node, (c) the Data 

Partition node, (d) the six predictive models, and (e) a model comparison node.  Model 

performance was compared using the Model Comparison node to rank models based on 

the misclassification rate, ROC and Cumulative Lift Charts. Predictive Power data is 

provided for the best model based on model comparison.  A confusion matrix was 

constructed to provide analysis information regarding true positive, true negative, false 

negative and false positive predictive data of the model.  These data were presented in 

Tables 8 and 9. 

 

Table 8 

Decision Tree Confusion Matrix 

 Predicted UARM (1) Predicted UARM (0) 
Actual (1) 4736(TP) 27(FP) 
Actual (0) 228(FN) 64376(TN) 

Note. 1=occurrence of UARM, 0=nonoccurrence of UARM. N = 69,367. TP=True 
Negative. TN=True Negative. FP=False Positive. FN=False Negative. 
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Sensitivity was calculated by dividing true positive predictive values of UARM by the 

combination of true positive and false negative prediction values of UARM.  Specificity 

was calculated by dividing true negative values of UARM by the combination of false 

positive and true negative values of UARM.  These results were presented in Table 9. 

Table 9 

Decision Tree Sensitivity/Specificity  

 UARM (1) UARM (0) 
Sensitivity 0.954 0.960 
Specificity 0.961 0.999 

Note. 1=occurrence of UARM, 0=nonoccurrence of UARM. 

 

 

Figure16. SAS EM model diagram example. A visual presentation of the SAS modeling 
process. 
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Table 10 presents the results of the comparison of misclassification rates for 

validation sample data (sample size was 138,733 cases) between the six models and were 

ranked using the lowest to highest values. The model comparison results indicate that the 

decision tree (2, 3, and 5 branches) and gradient boost machine had the lowest 

misclassification rates compared to the other models.  An examination of the ROC chart 

results indicated a performance differential between the DT model and other models. 

Thus, the DT model was determined to be the model with the highest accuracy for 

prediction of UARM.   

 
Table 10 
 
Summary of Model Comparison Misclassification Rate 

Model Description Misclassification Rate 
Decision Tree, 3 branch 
Decision Tree, 2 branch 
Decision Tree, 5 branch 

0.003 
0.004 
0.004 

Gradient Boost Machine 0.006 
Random Forest 0.009 
Support Vector Machine 0.033 
Logistic Regression 0.040 
Neural Network 0.048 

Note. Sample size was 138,733 cases for years 2001-2003 data. 

The Lift Chart was used to determine the predictive power of the models in more 

detail.  Truong et al. (2018) asserted that if Lift curves for training and validation samples 

are very close, model validity is strong.  Figure 17 presents the ROC results of the model 

comparison.  The ROC chart indicates a performance advantage for the DT model. Figure 

18 presents results for the Cumulative Lift Chart for the 6 models, which was also used to 

compare model predictive performance.  Because the Lift curve of the model is in close 

proximity to that of the best cumulative Lift curve, results were confirmed with additional 
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evidence of the predictive power of the DT model.  An examination of the Lift curve 

substantiates the results in with the top 20% of the responses generating a Lift value of 

1.5.  This indicates that approximately 30% of UARM occurrences could be predicted 

with this model compared with prediction of UARM without the model.  

 

 
Figure 17. Receiver Operating Characteristics chart for the model comparison. Validation 
data used to compare model performance indicated DT model performed the best.  
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Figure 18. Cumulative Lift chart for the model comparison. Lift charts provided a model 
comparison and depicted similar performance between the models.  

 

Additional reliability assessment methods available included a comparison of 

model performance between different models using the same data set.  Figures 19, 20 and 

21 presented model comparison information between examples used with DT, LR, and 

NN models.  These similarities between these results of different models using 

misclassification rates indicated good consistency in the data, hence good reliability. 
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Figure 19. Subtree Assessment Plot for DT model. Provided a basis for comparison 
between DT model and other predictive models. A favorable comparison between 
different models with similar results in misclassification rate indicated good model 
reliability. 
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Figure 20. Assessment Plot for logistic regression model. Provided a basis for 
comparison between LR model and other predictive models. A favorable comparison 
between different models with similar results in misclassification rate indicated good 
model reliability. 
 
 



155 

 

 

Figure 21. Assessment plot for neural network model. Provided a basis for comparison 
between NN model and other predictive models. A favorable comparison between 
different models with similar results in misclassification rate indicated good model 
reliability. 
 
 

Variable Importance  
 

Once the DT model was determined to be the best performing model, variable 

worth was determined using the Score node using only the 2004 data set.  Sarma (2013) 

asserts that relative importance is measured between 0 and 1.  The Variable Worth Plot 

used the Gini split statistic, which Sarma (2013) describes as a total leaf impurity.  For 

example, a variable worth was calculated with a decision tree with a depth level of six.  

Variable importance was determined using the best performing model, DT with three 

branches.  Based on the analysis of the 2004 flight data with a sample size of 13,492 

cases, findings indicate that six important variables stood out in the prediction of UARM.  

Glideslope deviation (GLS) was the most important variable in the prediction model.  
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The other important predictor variables in ranked order were: (2) selected airspeed, (3) 

localizer deviation, (4) flaps not extended, (5) drift angle, and (6) approach speed 

deviation.  Figure 22 presents results of variable importance regarding the value of each 

predictor variable in the prediction of UARM.  

  

 

Figure 22. Variable importance plot for predictor variables. Horizontal axis presented 
important predictors. Vertical axis indicated relative worth. Note. GLS=Glideslope 
Deviation, CASS=Selected Airspeed, LOC=Localizer Deviation, FLAP=flap position, 
DA=Drift Angle, CAS=Calibrated Airspeed.  
 
 Additional details regarding the relative impact of these variables can be analyzed 

using the best performing model, DT.  Figure 23 shows an overview example of the DT 

model including the validation results used to analyze and interpret the DT model.  

Figure B3 provides an enlarged presentation of the DT model.  The parent node (UARM) 

indicates that 92.84 percent of the flights do not contain evidence of UARM whereas 7.86 
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percent are classified as containing evidence of UARM.  Probability of UARM 

occurrence and the effects of impact variables are analyzed and interpreted as follows: 

• In the parent node, glideslope deviation (GLS, vertical deviation) was 

considered an important predictor of occurrence of UARM or non-

occurrence of UARM.  If the glideslope deviation was greater than 0.17 

(GS > 0.17), then there was approximately 99 percent likelihood of the 

occurrence of UARM.  If the glideslope deviation was less than -0.17 (GS 

<-0.17), there was approximately 98 percent likelihood of occurrence of 

UARM. 

• Distance to Waypoint (DWPT) was determined to be a predictor used in 

splitting criterion for the DT.  If the distance to waypoint was less than 

18610 then there was approximately 99 percent likelihood of occurrence 

of UARM. 

• The next important factor was selected calibrated airspeed (CASS).  If 

CASS indicated less than 104 knots indicated airspeed, then 98 percent 

likelihood of UARM occurred.  If CASS was greater than 104, then 2 

percent occurrence of UARM was likely.   

• Altitude Rate (ALTR) was determined to be a predictor in splitting 

criterion for the DT.  If ALTR was greater than 1704 feet per minute there 

was a likelihood of approximately 99 percent occurrence of UARM.  

Consequently, if ALTR was less than 120 feet per minute, then there was 

also approximately 99 percent likelihood of occurrence of UARM. 
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• LOC deviation was indicated to be an important predictor of UARM.  

When LOC (lateral deviation) exceeded 0.12 (LOC > 0.12), there was a 

likelihood of 98 percent occurrence of UARM.  LOC values of less than – 

0.12 (LOC < - 0.12) indicated a likelihood of occurrence of UARM of 

approximately 98 percent. 

• CASS was again used in splitting criteria in the next child node in the tree.  

If CASS indicated greater than 130 knots indicated airspeed, then 99 

percent likelihood of UARM occurred.  If CASS was less than 130, then 

only a 2 percent occurrence of UARM was likely.   

• Flaps not extended (FLAP) was used in the following node tree decision 

criteria: flaps not extended indications contributed to the occurrence of 

UARM 99 percent of the time, whereas flaps extended indicated the 

occurrence of UARM 0.33 percent likelihood. 

• Distance to Waypoint (DWPT) was again used determined to be a 

predictor used in splitting criterion for the DT.  If the distance to waypoint 

was greater than 2488 then there was approximately 99 percent likelihood 

of occurrence of UARM.  Conversely, if the distance to waypoint was less 

than 2488, then likelihood of UARM occurrence dropped to 

approximately 5 percent. 

• Approach speed (CAS) was used in the next branch of the tree.  If CAS 

indicated between 150 knots indicated airspeed and 211 knots indicated 

airspeed, then there was approximately a 90 percent likelihood of UARM 

occurrence.  If CAS was less than 150 KIAS, then 4 percent occurrence of 
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UARM was likely.  Consequently, if CAS was greater than 211 KIAS, 

then UARM was approximately 0.3 percent. 

• Drift Angle (DA) was used in the next branch.  If DA indicated greater 

than 11.8, then 86 percent likelihood of UARM occurred.  However, if DA 

values increased to 12.6 or greater, then likelihood of occurrence of 

UARM dropped to nearly 0 percent.   

• The terminal leaf in the tree used CAS in the splitting criteria.  If CAS 

indicated greater than 150 knots indicated airspeed, then 79 percent 

likelihood of UARM occurred.  If CAS was less than 150, then likelihood 

of occurrence of UARM dropped to nearly 0 percent.   

• Drift Angle (DA) was used in the terminal leaf.  If DA indicated greater 

than 11.9, then 98 percent likelihood of UARM occurred.  If DA was less 

than 11.9, then likelihood of occurrence of UARM dropped to nearly 0 

percent.  
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Figure 23. Decision tree model of UARM.  Provides a visual representation of the best 
performing model, Decision Tree model with three branches. 
 

Champion model misclassification rate analysis was used in conjunction with the 

Cumulative Lift and ROC charts presented in Figures 24 and 25 to demonstrate model 

validity.  The Cumulative Lift chart in Figure 24 provided a model comparison with the 

use of no model and indicated a lift of 100% with both 10% and 20% of the population 

sampled, which compared favorably to the no Lift conditions without the use of the 

model.   Additionally, the ROC chart in Figure 25 provided a demonstration of model 

validity with the very high value of area under the curve between model 

sensitivity/specificity and the diagonal line of discrimination. 

High values of model validity were also demonstrated based on assessment of 

model accuracy.  Model accuracy was a measure of how well the champion model 

correctly predicted UARM.  Table 12 confusion matrix data (TP = True Positive, TN = 
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True Negative, FP = False Positive, and FN = False Negative) were used to calculate 

model accuracy as presented in Equation 1. 

Accuracy = (TP + TN)/(TP + TN + FP + FN) = .997.                                       (1) 

Truong et al. (2018) asserted that model predictive accuracy above 80% was considered 

acceptable performance, therefore the champion DT model demonstrated very high 

validity. 

Predictive power of the champion model was presented using Cumulative Lift and 

ROC charts in Figures 24 and 25, respectively.  In the Cumulative Lift Chart, lift was the 

ratio of the percent of captured responses within each percentile bin to the average 

percent of responses for the model.  Cumulative Lift was calculated by including all data 

up to the percentile bin.  The Cumulative Lift chart provided a depiction of the advantage 

of using the predictive model regarding probability of UARM over the random prediction 

of UARM without the use of the predictive model.  Perfect prediction models 

representing 100% sensitivity (no false positives) and 100% specificity (no false 

negatives) would be represented by sensitivity/specificity of (0,1) on the ROC chart with 

the AUC (area under curve) between the model results and the line of discrimination 

maximized.  The AUC represented the probability randomly chosen positive results of 

UARM prediction occurred higher than a randomly chosen negative instance.  The 

substantial AUC indicated the strength of the predictive power of the model. 
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Figure 24. Cumulative lift chart for DT model.  Provides a visual representation of the 
lift of the best performing model, Decision Tree model with three branches.  The Chart 
provided information comparing model performance of UARM prediction using a 
random process rather than the use of the predictive model. 
 

 

Figure 25. Receiver Operating Characteristics chart for DT model.  Provides a visual 
representation of the predictive power of the best performing model, Decision Tree 
model with three branches.  
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Figures 26 and 27 provide information on the leaf statistics and subtree 

assessment plot of the DT model.  The leaf statistics plot provided summary statistics for 

the best performing model, DT with 3 branches.  The subtree assessment plot provided a 

visual depiction of the number of subtrees in the DT model including a reference line that 

indicated the number of leaves in the final model.  Tuffery (2011) asserted that for 

classification DT models, the Leaf Statistics chart displayed the percentage of frequency 

of class levels (UARM or no UARM) within each leaf node.  The Subtree Assessment 

chart in Figure 27 provided a visual representation of how many observations were 

correctly and incorrectly classified for each value of the target variable, UARM.  A low 

number of misclassifications indicated that the model fit the data.  Misclassification rate 

was determined as depicted in Equation 2. 

MR = (FP + FN)/(TP + TN + FN + FP).                                                              (2) 

Where MR = misclassification rate, FP = False Positive, FN = False Negative, TP = True 

Positive, and TN = True Negative. 
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Figure 26. Leaf statistics plot for DT model.  Provides a visual representation of the leaf 
statistics of the best performing model, Decision Tree model with three branches. Leaf 
statistics contain information about frequency percentages for each class level of the 
target variable between training and validation data. 
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Figure 27. Subtree assessment plot for DT model.  The reference line indicated optimum 
number of leaves in the final model, 19.  The chart demonstrated similar performance 
between training and validation data samples using misclassification rate. 
 

Table 11 shows the variable importance for the best performing model, DT.  

Relative importance score from 0 to 1. The results indicate Glideslope deviation (GLS) 

was the most important predictor, followed by (2) selected approach speed (CASS), (3) 

localizer deviation (LOC), (4) flaps not extended (FLAP), (5) Drift Angle (DA), and (6) 

approach speed deviation (CAS).  These were predictors that contributed most to 

predicting Unstable Approach Risk Misperception.  
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Table 11 

Variable Importance for UARM  

Variable Number of Splitting 
Rules Importance 

GLS 67 0.84 
CASS 48 0.76 
LOC 135 0.72 
FLAP 56 0.70 
DA 45 0.53 
CAS 13 0.49 

Note. GLS=Glideslope Deviation. CASS=Selected Airspeed. LOC=Localizer. FLAP=Flaps. DA=Drift 
Angle. CAS=Calibrated Speed. 
 
Scoring 
 

The Score node in SAS® EM™ was used to score and code the DT model.  A 

separate data set, Year 2004 Recorded Flight Data, was used to score the best performing 

model, DT.  The purpose of the coding was to illustrate the relationships between the 

predictor variables and the target variable.  The first task in the scoring process was to 

evaluate variable importance using the 2004 flight data set. 

Oehling and Barry (2019) assert that discovering anomalous flight events is a 

classification task.  An evaluation of this task is commonly performed using a confusion 

matrix.  The purpose of a confusion matrix is to evaluate the number of correct (true) and 

incorrect (false) results that occur.  Table 12 presents the number of true positives, true 

negatives, false positives, and false negatives.  Sensitivity, specificity, precision, and 

recall can be determined from these results.  In the research, the purpose of the confusion 

matrix was to better understand the predictive accuracy of the DT model for the target 

variable, UARM.  Sarma (2013) asserts that prediction accuracy can be described based 

on sensitivity, specificity, and overall accuracy.  Sensitivity measures the true positive 
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fraction, and specificity measures the true negative fraction.  For example, sensitivity 

describes the ability of the model to correctly predict UARM, while specificity describes 

the ability of the model to correctly predict the non-occurrence of UARM.  Truong et al. 

(2018) describe the overall prediction accuracy as the total accurate prediction number 

divided by total number, or one minus misclassification rate.  

Table 12 

UARM Confusion Matrix for Champion DT Model 

 Predicted UARM (1) Predicted UARM (0) 
Actual (1) 483(TP) 3(FP) 
Actual (0) 17(FN) 6224(TN) 

Note. 1=occurrence of UARM, 0=nonoccurrence of UARM. N = 6727. TP=True Negative. TN=True 
Negative. FP=False Positive. FN=False Negative. 
 

Table 13 presents details of the sensitivity analysis.  Sensitivity and specificity 

values of UARM prediction are presented.  The results indicate that the probability of 

correctly detecting UARM was very high, with 99% accuracy. The sensitivity for the 

occurrence of UARM was very high at the 96% level, given the low rate of frequency of 

the occurrence of UARM as compared to the total number of approaches evaluated.  The 

specificity value showed the probability of correctly detecting the non-occurrence of 

UARM, at over 99%.  Finally, the overall prediction accuracy was 99%, indicating a very 

strong predictive performance.  Truong et al. (2018) assert that prediction accuracies of 

this level (performance > 80%) indicate very high predictive power. 
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Table 13 

Specificity and Sensitivity of Champion DT Model 

 UARM (1) UARM (0) 
Sensitivity 0.966 0.960 
Specificity 0.961 0.999 

Note. 1=occurrence of UARM, 0=nonoccurrence of UARM. 

 
These SAS codes could be used in conjunction with the DT model to make actual 

predictions using recorded flight data.  Figure 28 presented an example of the SAS 

scoring code for the DT model.  A complete presentation of the SAS codes was included 

in Figure B2. 

 

 

Figure 28. Example of scoring codes for DT model. Provided a representation of the 
scoring code in the final model for the DT model with GLS depicted. 
 



169 

 

 

Summary 

NASA has provided public access to FDR data, which was gathered from 35 

regional jets operating in the NAS from 2001-2004.  Data mining techniques were 

utilized to address the nature of the research.  Specifically, the successful development 

and deployment of the UARM algorithm and the procedural guidelines of AVSKD 

process provided the framework for the treatment of the data as well as the discovery of 

unstable approaches and evidence of the occurrence or the absence of UARM.  The 

SEMMA process was then successfully applied to the data, with the construction and 

evaluation of predictive models.  These NASA FDR data were modeled using: (a) 

decision trees with 2, 3, and 5 branches, (b) neural networks, (c) logistic regression, (d) 

support vector machine, (e) random forest and, (f) gradient boost machine predictive 

models.  Model performance was compared and tested, and achieved the goal of 

predicting the probability of UARM in the event an unstable approach occurs at 98%.  

Once the models were analyzed, a successful determination of how DM techniques could 

be utilized to predict UARM, and which were the most important predictors to the 

probability of UARM, was determined.  
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CHAPTER V 

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

The study addressed two areas of aviation safety:  (a) pilot aeronautical decison 

making lapses regarding unstable approaches and (b) the ability to predict Unstable 

Approach Risk Misperception.  A new algorithm, based on UARM, was successfully 

developed and deployed to augment other advanced machine learning algorithms used to 

explore large recorded flight data.  Data mining techniques were also successfully applied 

to recorded flight data in order to develop predictive models.  Federal Aviation 

Administration stable approach exceedance criteria were employed to investigate 

unstable approaches, their impact factors, and suggested lapses in pilot aeronautical 

decison making regarding landing or rejected landing.  Results of the study demonstrated 

that large recorded flight data could be used to discover new knowledge in flight 

operations.    

Results of the study successfully demonstated the deployment of a new algorithm 

which was used as a predictive tool for UARM. The scalability of the new algorithm was 

employed with the adaptation, application, and comparison of six advanced machine 

learning algorithms to recorded flight data.  The UARM algorithm was then used to 

predict conditions when pilots continued an unstable approach, rather than executing a 

rejected landing, which indicated a lapse in pilot aeronautical decision making.  Because 

of this evidence obtained in the demonstration, decision makers should be able to utilize 

this predictive capability to mitigate the hazards associated with pilot misperecption of 

runway excursions.   
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Discussion 

A knowledge discovery process was used to facilitate the prediction of a known 

aviation hazard, runway excursion caused by continuation of an unstable approach to 

landing.  The research questions were addressed regarding the application of machine 

learning alorithms and predictive modeling of recorded flight data; as well as the 

prediction of the probability of UARM and how to identify important predictors of 

UARM.  The study supported the findings of Oehling and Barry (2019), whose research 

showed that ML techniques could be applied to large recorded flight data for purposes of 

knowledge discovery.  Another similarity in the findings of the study and that of Oehling 

and Barry (2019) was the observation and recommendation that the application of the 

knowldege discovery process should consider other phases of flight, not only the 

approach and landing phase.  One key difference with Oehling and Barry (2019) was the 

disagreement in results indicating that the NN model was among the ML techniques with 

the highest predictive power.  Somewhat unexpected was that the Decision Tree model 

was the model that had the highest predictive power.  The literature had indicated that 

advancements in ensemble learning algorithms such as Random Forest and Gradient 

Boost Machine should provide modeling capacities that outperform traditional ML 

algorithms such as Decision Tree-based models.  Additionally, this finding did not 

support the assertion of Paul and Dupont (2015) that Random Forest should perform the 

best among ML techniques regarding the discovery embedded variables selected in the 

feature selection process. 

The flight data were recorded by FDRs on a fleet of 35 regional jets over a period 

of four years (2001-2004).  NASA had de-identified these data and made them available 
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to the public.  These data were analyzed to identify unstable approaches and to construct 

prediction models.  Although the age of the data was in excess of 15 years, several factors 

ensured the validity of not only the AVSKD process, but also the validity of the data used 

in the research.  At the time of the study, the FAA stable approach exceedance criteria 

had not been modified or changed since originally developed.  The stable approach 

criteria listed in Appendix 2 of FAA AC 120-71A were still used in SOP guidance for 

Part 121 US air carriers at both the time of data collection and of the study.   The 

scalability of the UARM algorithm allowed for the implementation of these flight data, 

and flight data variables were successfully identified to represent the stable approach 

constructs.  Additionally, unstable approaches were successfully identified based on the 

assessment of flight data variables.  The identification and extraction of unstable 

approach occurrence was critical to the deployment of the UARM algorithm.  

Additionally, algorithm scalability ensured that no performance fallibility would be 

expected with the application of flight data gathered on other airframe types or models or 

timeframe of data collection.  For example, the AVSKD and UARM algorithm process 

would be expected to demonstrate both reliability and validity independent on the data 

source (i.e., Boeing 747, Embraer 145, Airbus 320, etc.).  Scalability of the UARM 

algorithm included the timeframe of data collection would not have been expected to 

affect the reliability and/or validity of the model as well.  For example, results indicated 

that the data collected for the study (2001-2004) did not affect model performance, 

hence, no effects would be expected if the opportunity for a more recent data source 

became available for public research (i.e., 2017-2019).   
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The purpose of the research was to utilize machine learning techniques to explore 

large flight data in order to predict the target variable, Unstable Approach Risk 

Misperception.  Machine learning algorithms were used to develop a prediction model for 

Unstable Approach Risk Misperception and to determine important variables that 

contributed to the prediction of Unstable Approach Risk Misperception.  Predictive 

models were constructed based on advanced machine learning algorithms using 186 

recorded flight data variables.  Specific machine learning techniques applied to the flight 

data included: (a) decision tree with 2, 3 and 5 branches, (b) logistic regression, (c) neural 

network, (d) support vector machine, (e) random forest, and (f) gradient boost machine 

algorithms.  Once the models were built and validated, the model with the highest 

predictive score was used to predict the probability of UARM, which could be used to 

identify runway excursion hazard.  Additionally, SAS® EM™ software was used to rank 

flight data variables considered to be most important to the occurrence of UARM. 

The research was exploratory and data-driven in nature, based on answering two 

research questions: 

Research Question 1.  How can the application of data-mining and machine 

learning techniques to recorded flight data be used to predict the probability of 

Unstable Approach Risk Misperception by the pilot?  The research question was 

addressed with the development of a new algorithm based on unstable approach 

identification and subsequent occurrence (or not) of UARM.  Additionally, predictive 

models using advanced machine learning algorithms were successfully employed with 

the application of these models to recorded flight data.  Data mining techniques were 

successfully used to explore a large-volume FDR data from commercial flight operations 
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and to predict Unstable Approach Risk Misperception.  Data coding was successfully 

developed using FAA stable approach exceedance criteria, which was applied to FDR 

flight data.  A new algorithm was successfully developed using the Aviation Safety 

Knowledge Discovery model developed and validated by Mathews et al. (2013) at the 

NASA Ames Research Center.  The successful development and deployment of the 

UARM algorithm was a key accomplishment of the study.  The UARM algorithm 

successfully demonstrated how large flight data could be used to predict the probability 

of pilot risk misperception regarding the hazard of runway excursion.  Evidence of pilot 

risk misperception was represented by the decision the pilot to continue to a landing even 

when evidence existed of exceedance in any one or more of the flight data variables from 

the FAA stabilized approach criteria.  For purposes of this research, this target variable 

was defined as Unstable Approach Risk Misperception (UARM).  Data mining 

techniques were used to populate and compare various predictive models and to 

determine the most accurate model, decision tree with three branches, which was then 

used to make predictions of the target variable.  

In order to predict the probability that UARM would occur during an unstable 

approach, the following ML algorithms were used to build the models: (a) logistic 

regression, (b) decision tree with 2, 3, and 5 branches, (c) neural network, (d) support 

vector machine, (e) gradient boost machine, and (f) random forest.  Results indicated 

flight-related variables representing: (1) glideslope deviation, (2) selected approach speed 

(3) localizer deviation, (6) flaps not extended, (7) excessive drift angle, and (8) approach 

speed deviation were the most important predictors of probability of UARM occurrence.  
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Additionally, the occurrence of a rejected landing, or continued approach to landing, 

when confronted with evidence of an unstable approach, was also included.  

Findings indicated that the DT model performed with the highest predictive 

power, 96%.  Once the DT model was determined to be the highest scoring model, a 

separate data set (2004 FDR data) was used to: (a) determine the predictive probability of 

the target variable, UARM, and (b) rank input variables in order of importance.  Results 

of this analysis described the predictive accuracy of UARM as 98%.  A sensitivity and 

specificity analysis was conducted which indicated a true positive prediction of 96% and 

a true negative prediction of 92%.  Thus, the model was acceptable to answer the 

question of how to predict the probability of UARM.  

Research Question 2.  What flight data variables are the most important 

predictors of pilot misperception of a runway excursion hazard as evidenced by 

continuing an unstable approach to a landing?  The research question was 

successfully addressed by analyzing the recorded flight data, specifically the approach 

and landing phases of flight which indicated exceedance of FAA stable approach criteria, 

and using these criteria to develop and compare several different predictive models.  The 

successful development and deployment of the new UARM algorithm provided an 

appropriate tool to accomplish this task.  These data were extracted using snapshots at 

two assessment windows, once again using FAA stable approach assessment criteria.  

Data was sampled at a 500 ft AGL assessment window and also at a point of either 

landing or a rejected landing (WOW either greater than or equal to 0).  Assessment was 

conducted using the flight data variables with FAA AC-120-71A (FAA, 2003) providing 

guidance for variable selection for the UARM algorithm.  For example, (a) target 
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approach speed deviation, (b) flap position, (c) landing gear position, (d) engine speed, 

(e) altitude above ground level (AGL), and (f) glide path deviation were variables stated 

in the FAA stable approach criteria categories. Adherence to stable approach criteria was 

determined based on the data, including: (a) the vertical and lateral position of the aircraft 

with reference to the landing runway, (b) energy state, and (c) landing configuration. The 

information gathered in the data analysis was then used to develop models to predict the 

probability of the pilot misperceiving the runway excursion risk of continuing an unstable 

approach to landing.  Pilot risk misperception was suggested by the decision to continue 

to a landing even when evidence exists of exceedance in any one or more of the flight 

data variables from the stabilized approach criteria.   

An advantage regarding internal validity of the study was the restriction to FDR 

data from one air carrier, one type of aircraft, and one FAA certified FDR.  This 

limitation favorably decreased the likelihood of selection bias regarding feature selection 

and the application of FAA stable approach criteria.  For example, the three constructs 

(energy state, landing configuration, and aircraft location relative the landing runway) 

were based on exceedance criteria to flight data variables from only one aircraft type.  

These findings were not unexpected as the literature indicated that deviations in energy 

management were frequently found to be contributing factors in runway excursions 

(FAA, 2014). 

Variable importance was determined using the best performing model, DT.  

Findings indicate that six important variables stood out in the prediction of UARM.  

Glideslope Deviation (GLS) was the most important variable in the prediction model.  

The other important predictor variables in order of worth: (2) selected airspeed, (3) 
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localizer deviation, (4) flaps not extended, (5) drift angle, and (6) approach speed 

deviation.  Interpretation and effects of these important predictors to the probability of the 

occurrence of UARM are as follows: 

• Glideslope deviation.  Exceedance of glideslope deviation limits was also 

interpreted to be evidence of energy mismanagement.  High deviations 

would support the exceedance of other high ranked variables regarding 

excessive energy and was also interpreted to support indications by other 

exceedance variable importance rankings that indicated energy 

mismanagement.  This variable supports the high approach path that 

demonstrated high and fast at the assessment point. 

• Approach speed deviation.  The inclusion of airspeed deviations also 

supported the interpretation of energy mismanagement.  The exceedance 

of approach speed limitations provided additional evidence of high and 

fast energy mismanagement.  When combined with other important 

predictors of UARM, this flight variable provided support when combined 

with other important predictors regarding hazard of runway excursion. 

• Selected Calibrated Approach Speed.  A new finding that indicated the 

pilot selection of approach speed was an important predictor in UARM.  

The literature did not provide information of pilot selection of airspeed as 

an important predictor involved in either unstable approaches or runway 

excursions.  The inclusion of this flight data variable represented a new 

discovery in the analysis of unstable approaches and pilot risk 

misperception of runway excursions.  Significance of pilot selected 
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approach in the prediction of UARM was a key indicator in approach 

speed deviation contributory factors to unstable approaches and the 

suggested lapse in ADM.  Deviations between approach speed actually 

flown and selected approach speed were determined to be important in the 

prediction of UARM. 

• Localizer deviation and drift angle.  These two variables indicated 

exceedance in lateral relative position with the landing runway.  Although 

not a direct indicator of energy mismanagement, lateral exceedances were 

interpreted to indicate risk misperception of runway excursion (veer off) 

that could have resulted from inaccurate runway alignment for landing. 

• Flaps.  This variable was of key importance supporting the energy 

mismanagement at the assessment point.  If a pilot has the landing flaps at 

a 0 setting (flaps not deployed) at 500 feet, difficulty in maintaining 

approach speed and rate of descent would be expected.  This variable 

exceedance supported the interpretation that a combination of flaps up and 

speed brakes deployed indicated a risk misperception in ability to reduce 

energy prior to landing. 

Exceedances in GS, runway alignment (LOC and DA) and excessive airspeed 

were noted as off nominal (i.e., FAA exceedance criteria) energy management.  As such, 

analysis of those variables indicating a flight path trajectory of high and fast supported 

the assertion by the NTSB that energy mismanagement issues were contributory factors 

in many accidents/incidents involving runway excursions (NTSB, 2008; 2016).  Findings 

supported those of NTSB in several accidents and incidents described in previous 
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sections.  Pilots attempting to reduce energy with incorrect lift device deployment (speed 

brakes) was determined to be a contributory factor in American Airlines 1420 as well as 

several other incidents including runway excursions (NTSB, 2001).  

The findings fill the gaps in the literature for: (a) federal guidelines and oversight 

of hazards associated with unstable approaches and runway excursions, (b) aviation 

research conducted on pilot risk perception and risk tolerance, and (c) aviation research 

using predictive modelling based on advanced ML techniques applied to large FDR data.  

While the literature review described many examples of aviation research in each of these 

topics, the research filled the gaps as follows:  

Unstable approach and runway excursion hazards.  Findings of the study 

supported those provided by the FAA, NTSB, and FSF.  These entities described in detail 

oversight, guidance, and/or recommendations to operators regarding the hazards 

associated with mitigating the risk of runway excursions.  The FAA had listed unstable 

approaches as one of the most common causal factors in runway excursions (FAA, 2014).  

The FSF and NTSB corroborated this assertion that stable approaches (and safe landings) 

begin early in the approach planning phase of flight (FSF, 2009; NTSB, 2016, 2019b).  

Findings in the study concurred with these organizations that exceedances in stable 

approach criteria had been demonstrated with the analysis of large volumes of recorded 

flight data.  Interpretation of the results of important flight variable predictors of UARM 

supported the recommendations by the NTSB for the necessity of more focused data-

driven training in pilot ADM regarding risk perception.  Results of the study supported 

the FAA and NSTB call for improved pilot training initiatives, enhanced CRM training, 

as well as research into risk mitigation strategies for operators to avoid the hazards 
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associated with unstable approaches (FAA, 2017a; NTSB, 2016, 2019b).  Although the 

recorded flight data used in the research was insufficient to determine any actual 

occurrences of REs, results of important predictors indicated consistent energy 

mismanagement (high and fast) which were listed as contributory factors in runway 

excursions (runway overruns) in several incidents/accidents by the NTSB.  This 

interpretation also supported the discovery in recent aviation accidents that had 

demonstrated unstable approaches continue to be causal factors.  Results of the study also 

supported the NTSB recommendation that the aviation industry should respond to the 

hazard of unstable approaches with improvements in pilot training, as well as the 

development of CRM techniques to enhance pilot risk assessment and perception in flight 

operations (NTSB, 2013, 2019b). 

Pilot risk perception and risk tolerance.  Findings of the study successfully 

addressed the recommendation for future research by You and Han (2013), who 

recommended that potential factors affecting pilot lapses in ADM should be investigated.  

The researchers had also concluded that the safe operational behavior of pilots could be 

affected by HF characteristics such as ADM, HIP, SA, interpersonal communications and 

teamwork attitudes.  Identification of potential indications of lapses in pilot ADM, 

particularly those involving risk misperception associated with energy mismanagement 

on approach were demonstrated.  Results corroborated those of Hunter (2005) regarding 

the correlation between pilot risk perception and hazardous events.  Actions by pilots 

regarding energy management risk misperception were interpreted to have indicated the 

potential overestimation of ability to reduce energy for landing.  Excessive airspeed, rate 

of descent, and high on glidepath with a continuance to landing, rather than a rejected 
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landing, suggested risk misperception.  Results supported the conclusions of Hunter 

(2009), who asserted that pilot attitudes associated with perception of risk were strongly 

related to the relative levels of safety inherent in airline operations.  Findings also 

addressed recommendations from Hunter (2009) and addressed gaps in the literature 

regarding the need for future research in pilot risk perception.  Hunter (2009) specifically 

called for future research to be conducted to identify key factors that contribute to 

inaccurate perceptions of risk, which was one of the successful accomplishments of the 

research. 

Predictive modeling using recorded flight data.  Results of the study addressed 

gaps in the literature that were identified regarding anomaly detection in large flight data.   

Findings were in agreement with those of Bharadwaj et al. (2013), who detailed a 

multifaceted process of discovering and describing unusual events as Anomaly Detection. 

An area of agreement with Bharadwaj et al. (2013) indicated that anomaly detection was 

achievable in large flight data with the successful investigation to detect unusual events.  

One area of difference was that results did not support the use of cluster analysis to 

identify anomalies, but rather used standardized exceedance criteria.  For example, an 

unstable approach was considered an anomaly in the context of this research, as defined 

by any exceedance of limitations presented in FAA AC 120-71A.  However, results of 

the research did support the notion that anomaly detection could be described using 

events that did not fall into normal regions of expectations or standards.   

One key difference with results provided by Li et al. (2015) and Aslaner, Unal, 

and Iyigun (2016) was that the current study demonstrated how SMEs should not 

necessarily be needed for interpretation and classification tasks.  The successful 
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demonstration of the use of standardized FAA exceedance criteria and the scalability of 

the UARM algorithm precluded the need for SME interpretation of exceedance criteria 

used in anomaly detection.  Other differences in substance with the works of Li et al. 

(2015) and Aslaner, Unal, and Iyigun (2016) were noted.  These researchers applied 

clustering techniques, rather than standardized exceedance criteria, to flight data to 

identify anomalies in the takeoff and landing phases of flight.  Findings addressed the gap 

demonstrated in these works that included a vague description of what constitutes 

abnormal flight events, variables of interest in the clustering analysis, and the lack of a 

clearly defined target variable.  Findings also addressed deficiencies concerning the lack 

of a clearly described coding process.  Another result was the successful demonstration of 

the use of a repeatable coding process, that was then used to build the models used in the 

evaluation of the algorithms.  Conversely, results corroborated findings in the literature 

with the successful investigation into the application of advanced ML techniques to large 

FDR data to discover previously unknown anomalies, as recommended by Li et al. 

(2015) and Aslaner, Unal, and Iyigun (2016), 

Results supported those of Gera and Goel (2015), who suggested that data mining 

was part of a more general process based on the discovery of knowledge pertaining to 

large data.  Results also successfully addressed recommendations by Tong et al. (2018), 

who suggested that future research should use large FDM data to explore and discover 

anomalous events in the NAS.  One area of disagreement was the assertion by Tong et al. 

(2018) that random forest, rather than decision tree models, were best suited to extract the 

most important features in predicting a target variable, landing speed in their case. 

The demonstration of the capability of knowledge discovery process research 
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model to discover important predictors of flight trajectory prediction was an important 

result.  Additional results concurred with and supported the conclusions of Gallego et al. 

(2018), who produced research with the objective of investigating the effects of 

operational input variables on the vertical flight path trajectory prediction.  Conclusions 

also supported findings with Kang and Hansen (2018) and Achenbach and Spinler (2018) 

that future research should incorporate weather-related data for improving accuracy of 

the predictive models.   

Findings of the study built on those provided by Oehling and Barry (2019), who 

presented the use of ML techniques to detect unknown occurrences in flight data, 

generated by approximately 300 aircraft, from six different Airbus A320 fleets and sub-

fleets, for over 1000 flights per day, from March 2013 to March 2016.  Results support 

assertions by the researchers that methods enhancing the safety knowledge discovery 

process could be applied to large flight data.  The research also built of the results 

obtained by Oehling and Barry (2019), who described ML in terms of algorithms which 

learn from the data.  

Results of analysis described the strong predictive probability of UARM by the 

DT model as 98%.  A sensitivity and specificity analysis was conducted that indicated a 

true positive prediction of 95% and a true negative prediction of 99%.  These findings 

supported those of Maxson (2018), Truong et al. (2018), Oehling and Barry (2019), who 

asserted that models with predictive power above 90% indicated a high level of 

predictive performance.  Considering the high predictive power of the best model, 

findings indicate that the AVSKD research model was acceptable to address the 

objectives of the study.  
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Findings demonstrating the ability to predict hazards supported that FAA 

assertion that effective SRM strategies should incorporate predictive risk identification 

and mitigation.  For example, the ability to predict the probability of future occurrences 

of UARM could be useful in the successful safety risk mitigation strategies regarding the 

risk of runway excursions.  Traditional SMS strategies have focused on reactive and 

proactive mitigation strategies.  FAA guidelines suggested the development of predictive 

techniques in the SRM component of an organization’s SMS.  The FAA recommended 

that operators should be able to identify safety issues and spot trends before they result in 

an incident or accident.  The evolution of SMS strategies has resulted in the requirement 

for carriers to develop and implement predictive risk management (FAA, 2007a).  A 

SMS strategy favoring predictive methods rather than reactive is depicted in Figure 24. 
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Figure 29. FAA predictive Safety Risk Mitigation strategy.  Reprinted from “Safety 
Management System,” by Federal Aviation Administration, 2016. Retrieved from 
https://www.faa.gov/about/initiatives/sms/explained/basis/ 
 
Conclusions 

 
Continuation of an unstable approach to a landing had been identified by civil 

aviation authorities and the airline industry as one of the primary contributory factors to 

runway excursion hazards (FAA, 2014; NTSB, 2019b).  Although the FAA had 

stipulated that operators adhere to criteria defining stable approaches, results 

corroborated industry data that unstable approaches still occur with some pilots not often 

following the FAA guidance to perform a rejected landing (FSF, 2009).  Results 

indicated that 6% of unstable approaches resulted in a rejected landing, also supported 

this assertion.  Additionally, agreement was noted with FAA-provided LOSA data, which 

indicated that 97% of unstable approaches resulted in a safe landing and that 3% of 

unstable approaches resulted in rejected landings (FAA, 2013).  With the advent and 

deployment of advanced digital data recording devices, required under 14CFR §91.609 

for all air carriers with an operating certificate, opportunities existed to analyze recorded 
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flight data.  Concurrently, recent developments in complex mathematical machine 

learning algorithms have improved research capability regarding the analysis of these 

flight data.  The successful development and deployment of the UARM algorithm used in 

the research demonstrated the power and precision that such capabilities could achieve.  

Data mining techniques, both exploratory and predictive, can provide aviation researchers 

with the tools necessary to both analyze these large flight data and also to predict 

abnormal flight occurrences. 

Results also successfully demonstrated how the UARM algorithm could be used 

to identify models that accurately and precisely predicted the probability of pilot 

misperception of runway excursion risk based on stabilized approach criteria, as well as 

the identification of important flight variables associated with frequent non-compliance 

of rejected landing guidelines.  The UARM algorithm was also successfully used to 

identify important predictors of the occurrence of pilot risk misperception of runway 

excursion risk. 

Theoretical contributions. Gaps in the literature were addressed through the 

demonstration of a reliable and valid methodology to predict pilot Unstable Approach 

Risk Misperception.  Although hazards have been identified with the continued 

occurrences of runway excursions, the literature indicated that a reliable and valid 

representation of rejected landing decision making based on unstable approach criteria 

had not been fully investigated.  Results addressed this gap with the investigation of 

potential pilot lapses in aeronautical decision making, specifically in the rejected landing 

following an unstable approach.  Previous studies that have applied advanced data mining 

techniques to investigate and analyze large flight data have focused primarily on the 
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validation and evaluation of advanced mathematical algorithms.  Another important 

accomplishment was the demonstration of a predictive capability that could be used to 

mitigate the risk of Unstable Approach Risk Misperception.  

Two factors indicating opportunities for research became evident with a review of 

the literature.  The first factor was the large amount of data that are being recorded by 

advanced digital flight recorders on every commercial airline flight in the NAS.  Airlines 

are encouraged by the FAA to voluntarily participate in the FOQA program.  FOQA was 

designed to improve safety in commercial aviation by allowing airlines and pilots to 

share de-identified aggregate information with the FAA who can then monitor national 

trends in aircraft operations and focus its resources to address risk issues (e.g., flight 

operations, air traffic control (ATC), airports).  Although voluntary (in the United States), 

the FOQA program has resulted in very large amounts of flight data that have not been 

accessed on a scale appropriate for these data.  Even though pilot safety reports, accident 

reports, and safety debrief narratives constitute a large amount of data, the literature 

indicated that these data have only been explored with the use of text mining and 

qualitative methods.  The research successfully addressed this gap with the demonstration 

of FDR data analysis and predictive model building.  Previous studies relied on cluster 

analysis or exceedance criteria to discover abnormal flight events, but none offered a 

reliable and valid predictive model to predict Unstable Approach Risk Misperception.  

The second factor that indicated opportunities for research was that although 

various statistical analytical methods have revealed clear patterns in the prediction of 

pilot performance, the literature indicated these data have not been exploited in order to 

fully investigate significant relationships of the predictors.  An examination of the extant 
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literature indicated a gap in research providing evidence of a relationship between pilot 

performance and flight anomaly variables.  Previous studies described in the literature 

relied on results provided by the evaluation of subject matter experts, who were required 

to analyze the results and apply them to aviation problems.  The research demonstrated 

the ability to predict Unstable Approach Risk Misperception without the necessity of 

subject matter expert analysis.   

Algorithm development for predictive modeling.  A key finding was the 

demonstration of the successful development and deployment of the UARM algorithm 

used in the predictive modeling process.  The successful application of the AVSKD 

knowledge discovery process model to large recorded flight data using the UARM 

algorithm was also a significant finding.  The scalability of the UARM algorithm allowed 

for use of multiple sets of flight data variables to determine pilot risk misperception of 

runway excursion risk.  Additional findings were the discovery of the important 

predictors of UARM.  Results of the knowledge discovery process suggested that pilot 

risk misperception, specifically regarding energy mismanagement, had a strong 

relationship with the target variable, UARM.  New predictors were flight variables 

specifically associated with energy management exceedances.  Although airbrakes 

deployed and excessive approach speed were previously reviewed in the literature, key 

findings of the research included the discovery of additional new important predictors of 

UARM based on energy mismanagement of being high and fast (flaps up and excessive 

approach speed deviations).  The discoveries of new important predictors of pilot risk 

misperception of runway excursion risk was a key result of the research. 
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These results provided the successful demonstration that flight data variables 

could be used to develop the algorithm for UARM.  Once this determination was 

realized, a coding process was developed to create a data variable representing landing, 

rejected landing, and UARM.  An important development in the study was that of a 

straightforward If/Then decision process used to construct the UARM algorithm (See 

Figure 8).  Results of this If/Then assessment process were successful in the identification 

that evidence of UARM had occurred or not.  For example, once an unstable approach 

was identified, a determination was made whether or not a rejected landing was 

performed.  If evidence of an unstable approach was indicated, and a rejected landing was 

not performed, then UARM resulted.  Results of this UARM algorithm development 

were then successfully used to construct predictive models as well as the identification of 

UARM.  The rest of the flight data variables, including those representing the FAA stable 

approach criteria, were utilized as input variables and were anticipated to be continuous 

or categorical.  For example, approach speed was expected be continuous, based on 

numerical values while landing gear position was expected to be categorical (i.e. either 

up or down).   

Results indicated that one advantage of the UARM algorithm was that of 

scalability.  Several different predictive models successfully utilized the UARM 

algorithm with the application of recorded flight data.  Results demonstrated that real 

world recorded flight data was successfully assessed in the UARM algorithm process to 

predict the probability of occurrence of the target variable.  The UARM algorithm was 

successfully and repeatedly used with consistent results to evaluate large recorded flight 

data.  The algorithm was successfully developed based on initial data coding, subsequent 
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use of an If/Then decision-making process, and ultimately the extremely accurate and 

precise predictive power regarding the target variable, UARM.  The UARM algorithm 

provided a step-by-step, repeatable process to the analysis of recorded flight data and 

allowed for a reliable and valid methodology for the analysis of FDR data to predict 

UARM.   

Practical contributions. Key beneficiaries of the research are airline pilot 

simulator training programs and airline Safety Management System managers.  The 

ability of airline pilot training managers to not only predict UARM but also identify 

hazardous trends in aircraft state variables involved in ADM could have a positive impact 

on airline safety risk mitigation strategies inherent in pilot simulator training programs, 

such as the development of realistic runway excursion scenarios.  Results of the study 

could be used to further refine not only FAA (2014) stabilized approach criteria but also 

in the FAA oversight of air carrier pilot training programs.  

Safety Management Systems managers could use the results to improve SRM 

effectiveness, as required under 14CFR Part 5.  Because SMS programs have 

traditionally relied on hazard identification using accident and incident reports rather than 

predictive measures, predictive capabilities could be beneficial (FAA, 2007a).  The 

ability to predict UARM could provide SMS managers with a predictive tool that would 

enhance safety risk mitigation effectiveness. 

Unstable approaches and runway excursion hazards.  Results support positions 

taken by the FAA, NTSB, and FSF, who have provided oversight, guidance, and/or 

recommendations to operators regarding the hazards associated with mitigating the risk 

of runway excursions.  Results indicated that unstable approaches, followed by failure of 
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the pilot to execute a rejected landing, continued to occur in the NAS.  Interpretation of 

these results leads one to conclude that efforts to improve training and awareness of the 

runway excursion hazard have been ineffective.  Recommendations for improved pilot 

training initiatives, enhanced CRM training, as well as research into risk mitigation 

strategies for operators to avoid the hazards associated with unstable approaches have 

seemingly not addressed the critical factors (FAA, 2017a; NTSB, 2016, 2019b).  Results 

support evidence of pilot energy mismanagement, which had been discovered to be 

among contributory factors in runway excursions in recent aviation accidents and 

incidents (Campbell et al., 2018).  Results concur with and support the position taken by 

the NTSB, which had recommended that the aviation industry respond to the hazard of 

unstable approaches with improvements in pilot training, as well as the development of 

CRM techniques to enhance pilot risk assessment and perception in flight operations 

(NTSB, 2013; 2019b). 

Limitations of the findings 

The findings should be interpreted for external validity in the context of the 

following: (a) normal cockpit procedures; (b) calm weather; (c) uncontaminated runway 

with proper approach and runway lighting; (d) no pilot physiological anomalies; (e) no 

failures or degradation of aircraft equipment/systems; (f) fully operational navigational 

aids, (g) crews exercising proper CRM, and (h) proper use of automation, as supported by 

the 2013 FAA report Operational Use of Flight Deck Automation Systems (FAA, 2013).  
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These limitations provided stimulation for recommendations for future research as well 

as recommendations to the target population. 

Recommendations 

The ability of airline pilot training managers to not only predict UARM but also 

identify hazardous trends in aircraft state variables involved in ADM could have a 

positive impact on airline safety risk mitigation strategies inherent in pilot simulator 

training programs, such as developing realistic scenarios for an unstable approach 

resulting in a runway excursion.  Additionally, Safety Management Systems managers 

should use the predictive capabilities to support the FAA mandate for SRM mandate to 

be proactive in identifying and mitigating hazards. SMS programs have traditionally 

relied on hazard identification using accident and incident reports rather than predictive 

measures. 

Recommendations for the target population.  Results suggested that advances 

in airline pilot simulator training programs were necessary.  Findings indicate that 

unstable approaches were followed by a landing occurred at a rate of 94%.  Regulatory 

guidance has been provided and the hazard identified, yet the risk misperception of 

unstable approaches has not been successfully mitigated.  The ability of airline pilot 

training managers to not only predict UARM but also identify hazardous trends in aircraft 

state variables involved in ADM could have a positive impact on airline safety risk 

mitigation strategies inherent in pilot simulator training programs, such as developing 

realistic runway excursion scenarios.  

Recommendation 1.  Airline pilot training managers should develop simulator 

training scenarios to address potential pilot lapses in aeronautical decision making 
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regarding Unstable Approach Risk Misperception based on an analysis of recorded flight 

data.  For example, results suggested that pilots facing evidence of unstable approach 

regarding energy mismanagement attempted to reduce energy with deployement of speed 

brakes and idle power settings, rather than reject the landing.  Improved simulator 

training could assist pilots in the recognition of energy mismanagement, and the 

associated hazard of runway excurion based on being high and fast (Campbell et al., 

2018; FAA, 2013)  A goal of this enhanced training should be the goal of improving 

ADM resulting in increased likelihood of rejected landing when faced with evidence of 

unstable approach. 

Recommendation 2.  Airline industry Safety Management System managers 

should develop strategies, based on an analysis of recorded flight data, to better mitigate 

unstable approaches by identifying conditions where pilots misperceive the risk.  SMS 

managers should use safety awareness initiatives regarding pilot risk misperception of 

runway excursion risk.  Organizational safety culture should be enhanced to alleviate 

potential lapses in ADM regarding Unstable Approach Risk Misperception.  Pilots should 

be made more aware of the notion that a rejected landing is a successful outcome 

regarding unstable approach, which should also be supported by air carrier management. 

Recommendations for future research.  Future research involving data mining, 

machine learning algorithms, and predictive modeling should focus on more 

comprehensive flight data sets, not only aircraft state variables, to better represent the 

complex operational environment.  Based on the unexpected result of the identification of 

selected Mach early in the iterative variable importance investigation, factors related to 

other phases of flight could be important predictors of UARM.  This result was 
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unexpected as selected Mach was not observed to have contributed to the literature on 

unstable approaches or runway excursion contributory factors.  Mach speed is a flight 

variable associated with the cruise phase of flight, rather than approach and landing 

variables.  Therefore, it is recommended that all phases of flight should be investigated, 

not only the approach and landing phase, to determine if other factors and co-variates 

contribute to UARM.  For example, analysis of pilot descent planning and instrument 

approach briefings could reveal additonal factors contributing to Unstable Approach Risk 

Misperception.  Safety risk mitigation strategies should be included in the predictive 

model.  Furthermore, existing pilot alerting technologies such as Terrain Awareness and 

Warning System (TAWS)  and other technologies that alert the pilot of incorrect aircraft 

configuration or excessive rate of descent, should be incorporated into the model in order 

to investigate potential risk reduction strategies.  

Recommendation 3.  Develop more thorough and comprehensive models that 

extend beyond recorded flight data sets, to other data sets such as cockpit voice recorder 

data (e.g. crew/ATC coordination information) affecting decision-making, and weather 

data for external conditions (e.g. turbulence, wind-shear) affecting aircraft state variables.  

Predictive modeling of flight events should be enhanced with more thorough replication 

of those factors which could influence pilot ADM.  For example, weather conditions, 

including runway condition (ice or wet) should be included in flight data in order to 

enhance and improve predictive capability of models. 

Results of the study supported the literaature provided by FAA, NTSB, FSF, and 

IATA in terms of low SOP compliance rates regarding the unstable approach rejected 

landing decision-making process.   Future research should include the investigation of the 
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effects of not only CRM issues, but automation interface.  Findings provided by Giles 

(2013) were supported by the results of this study with the suggestion that low SOP 

compliance rates could indicate pilot to machine interface issues.  Giles also suggested 

that safety culture should be investigated for effects on low SOP compliance rates 

regarding the rejeced landing ADM process.    

Recommendations for future testing support those of Achenbach and Spinler 

(2018), who stated that significant limitations to their study were the lack of real-time 

weather data, the omission of crew resource management considerations as well as ATC 

flow control in the construction of predictive models.  For example, weather data (e.g. 

turbulence/convective activity) and ADM aspects of CRM could enhance the knowledge 

discovery process in the prediction of UARM and should be included in studies 

predicting pilot risk misperception.  

Recommendation 4.  Develop and enhance predictive pilot alerting technologies 

regarding unstable approaches to mitigate runway excursions.  Pilot alerting technologies 

have been previously developed to mitigate various risks, such as controlled flight into 

terrain, landing with gear up, and landing with evidence of windshear.  Similar 

technological developments should be pursued that would alert pilots when unstable 

approach conditions are evident and a rejected landing should be executed.  For example, 

AI should be further developed and utilized to enhance current certified technology such 

as Honeywell’s SmartLanding™ and other systems currently under development.  AI 

technology improvements to current systems should be further developed to comply with 

FAA recommendations shifting current SRM strategies from reactive and proactive to 

predictive (FAA, 2016).   
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APPENDIX A 
 

Data Source Authorization 

 
The archived data utilized in the research were made available to the public by 

NASA on its DASHlink website and did not require permission for either access or use.  

The link for the data is:  https://c3.nasa.gov/dashlink/projects/85/
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APPENDIX B 

Flight Data Code 

close all; clear; clc; 
write_values = false; 
if write_values 
%mat_files_struct = dir('data\*.mat'); 
mat_files_struct = dir('data\652*.mat'); 
mat_files = {}; 
for it = 1:length(mat_files_struct) 
if it == 1 
prev_percent = 0; 
fprintf('%d percent complete.\n', prev_percent); 
end 
mat_files{end+1} = mat_files_struct(it).name; 
S = load(['data\' mat_files{it}]); 
if it == 1 
% Construct headers and initialize. 
data2write = cell(1, 1); 
fields = fieldnames(S)'; 
data2write{1, 1} = 'Tail Number'; 
data2write{1, 2} = 'Identifier'; 
for f = 1:length(fields) 
data2write{1, f+2} = fields{f}; 
end 
data2write{1, end+1} = 'Landed'; 
end 
% Run checks. 
WS_RALT = 5; % Window size to take average of radio 
altimeter 
(seconds). 
MA = movmean(S.RALT.data, S.RALT.Rate*WS_RALT); 
if ~any(MA > 500) 
%fprintf([mat_files{it} ' is BAD.\n']); 
continue; 
end 
pks_dat = MA - 500; 
pks_dat(pks_dat > 0 | pks_dat < -50) = -50; 
[~, locs] = findpeaks(pks_dat); 
desc = movmean(diff(S.RALT.data), S.RALT.Rate*WS_RALT); 
locs(desc(locs - 1) > 0) = []; 
% locs is now the location where it is closest to 500ft 
altitude on 
% descent, ideally there should be only 1 element in locs, 
unless a 
% go around was executed. 
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t = unique(4.*ceil(locs./32)); 
if ~isempty(t) 
% Delete peaks too close (must be greater than 60 seconds 
apart). 
while any(diff(t) <= 60) 
t(logical([1 (diff(t) <= 60)'])) = []; 
1 
end 
else 
%fprintf([mat_files{it} ' is BAD.\n']); 
continue; 
end 
if length(t) > 4 
%fprintf([mat_files{it} ' is BAD.\n']); 
continue; 
else 
for L = 1:length(t) 
if L == 1 
r = size(data2write, 1); 
end 
data2write{r + L, 1} = num2str(mat_files{it}(1:3)); 
data2write{r + L, 2} = num2str(mat_files{it}(3: 
(end-5))); 
for f = 1:length(fields) 
temp_dat = S.(fields{f}).data; 
idx = S.(fields{f}).Rate*t(L); 
data2write{r + L, f+2} = S.(fields{f}).data(idx); 
end 
if length(t) == 1 
data2write{r + L, end} = 1; 
elseif length(t) ~= 1 && length(t) ~= L 
data2write{r + L, end} = 0; 
else 
data2write{r + L, end} = 1; 
end 
end 
end 
% More percentage stuff... 
if 100*it/length(mat_files_struct) >= prev_percent + 1 
clc; 
prev_percent = prev_percent + 1; 
fprintf('%d percent complete.\n', prev_percent); 
end 
end 
xlswrite('data500.xls', data2write); 
end 
vars_for_STD = {... 
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'LOC'; 
'GLS'; 
'DA'; 
}; 
vars_for_STD = sort(vars_for_STD); 
data = readcell('data500.xls'); 
headers = data(1, :); 
data(1, :) = []; 
% [Lia, Locb] = ismember(A, B) 
2 
[Lia, Locb] = ismember(vars_for_STD, headers); 
for it = 1:length(Locb) 
col_mat = cell2mat(data(:, Locb(it))); 
pd(it) = fitdist(col_mat, 'Normal'); 
end 
%{ 
Energy-state 
IVV 
GS 
ALTR 
CAS 
Landing-config 
LGDN - must be 0. 
PLA - if all 4 0, unstable approach. 
FLAPS - what unique values? histogram. ON HOLD 
Physical location state. 
LOC 
GLS 
DA 
%} 
UNSTABLE = cell(length(data), 1); 
UNSTABLE_EXCEEDED_VARS = cell(length(data), 1); 
UARM = cell(length(data), 1); 
num_unstable = 0; 
for r = 1:size(data, 1) 
exceeded = {}; 
[~, idx] = ismember('IVV', headers); 
if data{r, idx} > 1000 
exceeded = [exceeded {'IVV'}]; 
end 
[~, idx] = ismember('GS', headers); 
if data{r, idx} < 70 
exceeded = [exceeded {'GS'}]; 
end 
[~, idx] = ismember('ALTR', headers); 
if data{r, idx} > 1000 
exceeded = [exceeded {'ALTR'}]; 
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end 
[~, idx] = ismember('CAS', headers); 
if data{r, idx} < 100 || data{r, idx} > 150 
exceeded = [exceeded {'CAS'}]; 
end 
[~, idx] = ismember('LGDN', headers); 
if data{r, idx} ~= 0 
exceeded = [exceeded {'LGDN'}]; 
end 
3 
[~, idx] = ismember({'PLA_1', 'PLA_2', 'PLA_3', 'PLA_4'}, 
headers); 
if all(cell2mat(data(r, idx)) == 0) 
exceeded = [exceeded {'PLA'}]; 
end 
for it = 1:length(Locb) 
bounds = [(pd(it).mu - 3*pd(it).sigma), (pd(it).mu + 
3*pd(it).sigma)]; 
if data{r, Locb(it)} < bounds(1) || data{r, Locb(it)} > 
bounds(2) 
exceeded = [exceeded vars_for_STD(it)]; 
end 
end 
if isempty(exceeded) 
UNSTABLE{r} = 0; 
else 
UNSTABLE{r} = 1; 
UNSTABLE_EXCEEDED_VARS{r} = strjoin(exceeded, ', '); 
num_unstable = num_unstable + 1; 
end 
if UNSTABLE{r} == 1 && data{r, 189} == 1 
UARM{r} = 1; 
else 
UARM{r} = 0; 
end 
end 
data2write2 = [headers, {'UNSTABLE', 'UNSTABLE EXCEEDED 
VARS', 'UARM'}; 
data, UNSTABLE, UNSTABLE_EXCEEDED_VARS, UARM]; 
xlswrite('data500_w_EXCEEDANCE.xls', data2write2); 
Published with MATLAB® R2019a 
 

Figure B1. Flight variable data code.  
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Figure B2. SAS DT data code.  
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Figure B3. Final decision tree model. 
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APPENDIX C 

Tables 

C1 Decision Tree Node Properties 

C2 Results of the Decision Tree 

C3 Data Mining Tasks 

C4 Equation Modeling Properties 

C5 HP SVM Node Functions 

C6 Flight Operational Quality Assurance (FOQA) Variables 

C7 Random Forest
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Table C1 

Decision Tree Node Properties  

Function Definitions 

Node ID The first DT node in a diagram.  Subsequent Decision Tree nodes that are added to a 
diagram was identified as Tree2, etc. 

Imported 
Data 

Consists of a list of data sources to the DT node. The achieved data source, NASA 
FDM data variables, was used to select the row of data using the following menu 
options:  

• Browse – Opens a window to observe the data set.  
• Explore – Allows sampling and plotting of the data. 

Properties  

Exported 
Data 

List of the output that the DT node creates.  Was used for selecting the table row using 
the following:  

• Browse – Enables observation of the data set.  
• Explore – Allows sampling and plotting of the data. 

Properties Describes flight data variables. 

Property  Definitions of the Properties to Train the Model 

Variables Describes each variable data. Can also be used to generate a report or generate a 
variable table.  The Use Status feature allows selection of input variables and 
determines the target variable.  The Explore option allows viewing of the distribution of 
a variable.  

Interactive Commences an interactive training session.  

Import Tree 
Model 

Determines if the DT node was used to import a model generated using any other DT 
node.  

 Tree Model Data Set: Enables the selection of the DT model from an earlier iteration of 
the DT node.  Changes to the Score and Report properties for the imported DT can be 
modified using this node.  

Use Frozen 
Tree 

Allows for the iterative process of the creation of a new tree or a frozen tree in the 
training process.  

(continued)  
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Table C1 
 
Decision Tree Node Properties (Continued) 

 

Property Definitions of the DT Splitting Rule Node Train Properties 
Interval Target 
Criterion 

Notes the constraints considered in potential interval variable splitting rules and to 
select variables. Criteria options available include: 

• ProbF – Node variance F-test and p-values. 
• Variance – Node mean reduction of the square of the error. 

Nominal 
Target 
Criterion 

Evaluates potential splitting rules and to select variables. Criteria options available 
include:  

• ProbChisq – Generates Chi-square p-values for the branch node. 
• Entropy measure 
• Gini index 

Ordinal Target 
Criterion 

Considers rules for splitting and selecting of variables. The following splitting criteria 
options include: 

• Entropy measure 
• Gini index 

Significance 
Level 

A p-value which represents the worth of potential splitting rules.  

Missing 
Values 

Determines how rules consider missing values among the following options:  
• Use in search – Considers missing data and generates a model with maximum 

worth. 
• Most correlated branch – Assigns missing data to branches containing least 

sums of the squares of residuals 
• Largest branch – Assigns missing data to the largest branch 

Use Input 
Once 

Determines if a flight data variable can be used iteratively or once.  

Maximum 
Branch 

Determines how many branches that were used to construct the DT model, from a 
range of 2 – 100.  

Maximum 
Depth 

Specifies the maximum number of generations of nodes that limited the DT model 
between 1 and 50. 

Minimum 
Categorical 
Size 

Determines the least number of training observations required to a split search.  

(continued)  
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Table C1 
 
Decision Tree Node Properties (Continued) 

 

Property Definitions of the DT Node Train Properties 
Leaf Size The least number of training iterations contained in a leaf.  

Number of 
Rules 

The number of the splitting rules contained in a node.  Only one rule was saved and 
the remaining were used.  

Number of 
Surrogate Rules 

Defines how many rules were used by the decision tree when missing values are 
used in the main splitting rule. 

Split Size The least quantity training observations contained in a node prior to a split.  

Property Definitions of the DT Split Search Node Train Properties 

Use Decisions Uses selected information in the split search.  

Use Priors Prior probabilities are used in the search.  

Exhaustive Indicates how many splits were used in an exhaustive search. Applies to binary splits 
up to 2,000,000,000.  

Node Sample: Determines node sample size n.  

Property Definitions of the DT Subtree Node Train Properties 

Method Selects a subtree from a mature tree based on the number of leaves: 

Assessment Highest assessment with the smallest subtree.  

Largest The largest tree.  

N Used to determine N, the number of leaves on the largest tree.  

Number of 
Leaves 

The highest value of N, which identifies largest number of leaves that were selected 
in a subtree of n leaves.  

Assessment 
Measure 

Used to select the performing DT:  

Decision Was set to Misclassification, using UARM.  

Average Square 
Error 

Least average square error.  

Misclassification Lowest misclassification rate.  

Lift Ranks top N% of the observations, based on the prediction of UARM and evaluated 
using top n% of the ranked observations.  

Assessment 
Fraction 

Indicates the proportion of the top n% of observations in the model assessment.  

(continued)  
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Table C1 
 

Decision Tree Node Properties (Continued) 

 

Property Definitions of the DT Cross Validation Node Train Properties 
Perform Cross-
Validation 

Performs cross-validation of subtrees in the sequence.  

Number of 
Subsets 

Calculates cross-validation subsets, up to 20.  

Number of 
Repeats 

Calculates the number of iterations in the cross-validation process, up to 100. 

Seed For generating validation sets, generated randomly.  

Property Definitions of the DT Observation-Based Node Train Properties 

Observation 
Based 
Importance 

Determines if observation-based importance statistics should be calculated.  

Number Single 
Variable 
Importance 

Determines the number of variables for which statistics should be calculated.  

Leaf Variable Suppresses NODE variables in the output data, when set to NO.  

Property Definitions of the DT Interactive Sample Node Train Properties 

Create Sample Uses all of the data or only a sample.  

Sample 
Method 

Determines the sampling method.  Options are Stratify, First N, or Random.  When 
User is selected to Create Sample, Stratify is utilized. 

Sample Size Determines sample size.  

Sample Seed Indicates the random number generator seed used to sample the data. 

Performance Determines where to store the training data. 

Disk Uses a disk utility file.  

RAM Uses memory. 

Property Definitions of the DT Score Properties Node 

Variable 
Selection 

Uses value of importance to select variables.  

Leaf Role The Segment, Input, or Rejected properties specify the variable role. 

(continued)  
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Table C1 
 
Decision Tree Node Properties(Continued) 

Property Definitions of the DT Report Properties Node 

Precision To display the number of decimals in the Observation Based Importance, Variable 
Importance, and Subtree Assessment tables and plots.  

Tree 
Precision 

Displays the average values of the nodes and the splitting value in decimal places.  

Class Target 
Node Color 

Selects color as display options: 

Percent 
Correctly 
Classified 

Correct classification percentage of observations.  

Percent of 
Event 

Colors correspond to the UARM event level.  

Single Color Enables selection of the same color for all nodes.   

Interval 
Target Node 
Color 

Color selection for target variable:  

Average Average target value.  

Root Average 
Square Error 

Square root of the average square error.  

Single Color All nodes have a same color. 

Node Text Selects node text to be included in the DT:  
• Node ID 
• Show Validation Statistics 
• Count 
• Class Targets 
• Predicted Value  
• Percent Correct  

Property Definitions of the DT Status Property Node 

Create Time When the creation of the node occurred.  

Run ID Node run identifier.  

Last Error Last run error message.  

Last Status Node status.  

Last Run 
Time 

Node run time.  

Run Duration Duration of last node run.  
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Table C2 
 
Results of the Decision Tree  
 

Property Description of Node Results 

Settings Properties of the DT node.  

Run Status DT node run status, to include: start time, duration, ID, and 
success of the run.  

Variables Training set data variables 

Fit Statistics Table Presented on Leaf Statistics Plot 

Classification Chart Correct classification a bar chart 

Score Rankings Overlay 
Chart 

Presented Data on DT model Scoring 

Score Rankings Matrix Used to demonstrate model accuracy 

Score Distribution Plot Presented results for DT model score 

Variable Importance Importance of each input variable 

Observation Based 
Importance Statistics 

Used to present important statistics for DT model 

Table Chart construction variables 

Plot Used to modify an existing Results plot or create a Results 
plot 
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Table C3 
 
Data Mining Tasks  

Term Description 

Sample the 
Source of Input 
Data 

Appropriate for large sources of data to decrease model training time.  

Create 
Partitioned Data 
Sets 

Splits the data sample into training, validation, and test data sets. The training data set is 
used to calculate the regression equation. The validation data set can be used to fine-tune 
stepwise regression models (prevent the models from over-fitting the training data). The 
validation data set is also used by default for model assessment. The test data set can be used 
to obtain an unbiased estimate of the generalization error of a model.  

Select 
Important 
Variables 

Although prior knowledge is valuable in the selection of important variables to unstable 
approaches, the exploratory nature of the study encourages the use of the entire data set to 
train the regression model.  This may however, increase training time for the regression 
model as well as negatively affect the prediction results.  The Multiplot node was used to 
generate exploratory plots to help identify important predictors.  This iterative process will 
also help in the rejection of unimportant predictors using the Variable Selection node.  

Transform Data 
and Filter 
Outliers 

Used to stabilize predictor values using appropriate transformation options such as log, 
exponential, inverse and square root.  

Property Regression Node Functions 

Node ID The first DT node in a diagram.  Subsequent Regression nodes that are added to a diagram 
were identified as R2, etc. 

Imported Data Consists of a list of data sources to the REG node. The achieved data source, NASA FDM 
data variables, were used to select the row of data using the following menu options:  

• Browse – opens a window to observe the data set. 
• Explore – allows sampling and plotting of the data. 

Exported Data Lists output data created by the REG node.  Was used to select the table row using the 
following:  

• Browse – Enables observation of the data set. 
• Explore – allows sampling and plotting of the data. 

Properties Describes flight data variables.  
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Table C4 
 
Equation Modeling Properties  

 

Property Description 
Main Effects Used to suppress, or not to suppress input and rejected variables.  
Two-Factor 
Interactions 

Used to include, or not, two-factor interaction of class variables.  

Polynomial 
Terms 

Used to include, or not, polynomial terms for interval variables.  

Polynomial 
Degree 

Includes, or not, the highest degree polynomial terms to be included in the regression 
analysis.  

Term Editor Was used to specify the variable interaction terms.  
Property RN Model Options Train Properties 

Suppress 
Intercept 

Used for classification of variables, not used for ordinal target variables. 

Input Coding Enables method of coding class variables. 
General Linear 
Models 
(GLM) 

Uses dummy coding, to calculate differences between levels.  Coding of 1 is used for 
the dummy indicator variables, except for the terminal level, which is represented by 1.  

Deviation Effects coding, calculates differences between specific levels and the average value.  
Property RN Model Selection Train Properties 

Selection 
Model 

Identifies the type of training model.  

Backward Initial iteration includes all predictors and filters with each iteration until Significance 
Level or the Stop Criterion has been reached.  

Forward Initial iteration includes no predictors and adds predictor values begins until the Entry 
Significance Level or the Stop Criterion has been reached.  

Stepwise Initial iteration commences in Forward but continues until Stay Significance Level or 
Stepwise Stopping Criteria have been reached.  

None Initiates modelling with all input variables.  

Selection 
Criterion 

Available options to select final criteria: 
• Validation Error – selects the model with the lowest error rate based on the 
validation data set. 
• Validation Misclassification – Selects the model with the lowest misclassification 
rate. 
• Cross-Validation Error – Selects the model with the lowest error rate value of 
negative log-likelihood for logistic regression. 
• Cross-Validation Misclassification – Selects the model with the lowest 
misclassification rate. 

Use Selection 
Defaults 

Used to set select model selection criteria or can be set to criteria properties based on 
defined values, such as exceedance of flight data variables.  

(continued)  
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Table C4 
 
Equation Modeling Properties (Continued) 

Property Selection Options 
Sequential 
Order 

Adds or removes variables based on the model statement.  

Entry 
Significance 
Level 

Used in forward and stepwise regression to add variables. 

Stay 
Significance 
Level 

Used in forward or stepwise regression to remove variables.  

Start Variable 
Number 

Used to specify initial the number of predictors.  

Force 
Candidate 
Effects 

Used to enter the number of variables that Were used in all candidate models. 

Hierarchy 
Effects 

Applies hierarchy rules in the selection process, using the following options: 
• All – Applies to all variables  
• Class – Applies to only class variables.  
• Moving Effect Rule – Options allow either the application of hierarchy or 

model effects are removed in the iterative process, using the following 
options:  

• None – The application of hierarchy is not utilized.  
• Single – Single predictors are used in the iterative process and hierarchy 

applications are utilized.  
• Multiple – Multiple predictors are used in the iterative process with the 

application of hierarchy utilized.  
• Maximum Number of Steps – Used to, n, the maximum number of steps that 

Were used in the stepwise model effect selection process. 
Property RN Optimization Options Train Properties 

Technique • Default  
• Congra – For modelling with more than 500 variables.  
• Dbldog – Double Dogleg optimization technique.  
• Newrap – Newton-Raphson with Line Search optimization technique.  
• Nrridg – Newton-Raphson with Ridging optimization technique.  
• Quanew – Quasi-Newton optimization technique.  
• Trureg – For modelling with less than 40 variables.  
• Default Optimization – Used to select model default optimization.  
• Max Function Calls – Maximum allowed in the optimization technique.  
• Maximum Time – Limits processing time. 

(continued)  
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Table C4 
 
Equation Modeling Properties (Continued) 

Property RN Convergence Criteria Train Properties 
Uses Defaults Sets default convergence criterion values.  
Options • Absolute - Absolute convergence criterion. 

• Absolute Function - Used to specify an absolute function convergence 
criterion. 

• Absolute Function Times – Constraints are applied requiring a specific 
number of successful iterations. 

• Absolute Gradient - Used to specify the absolute gradient convergence 
criterion that Was used. 

• Absolute Gradient Times – Limits termination to that of successful 
convergence criterion achievement. 

• Absolute Parameter - Used to specify the absolute parameter convergence 
criterion. 

• Absolute Parameter Times – Sets limits to that of satisfaction of parameter 
convergence. 

• Relative Function – Used to specify the relative function convergence 
criterion. 

• Relative Function – Used to specify the relative function convergence 
criterion. 

• Relative Function Times – Sets limits to that of satisfaction of relative 
convergence. 

• Relative Gradient – Used to specify the relative gradient convergence 
criterion. 

• Relative Gradient Times – Sets limits to that of satisfaction of relative 
gradient criterion. 

Property RN Output Options Train Properties 
Confidence 
Limits 

Used to set the Confidence Limits property of the RN. 

Save 
Covariance 

Used to set the Save Covariance property.  

Covariance Used to set the Covariance property of the RN.  
Correlation Used to set the Correlation property of the RN.  
Statistics Used to set the Statistics property of the RN.  
Suppress 
Output 

Used to set the Suppress Output property of the RN.  

Details Used to set the Details property of the RN.  
Design Matrix Used to set the Design Matrix property of the RN.  

Property RN Score Properties 
Excluded 
Variables 

Specifies processes for excluded variables.  

None Role unchanged.  
Hide  Are removed from the node.  
Reject Role is rejected.  

(continued) 
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Table C4 
 
Equation Modeling Properties (Continued) 

Property RN Status Properties 
Create Time Node creation time. 
Run ID  Node run identifier.  
Last Error Any error message displayed.  
Last Status Status of the node is displayed.  
Last Run Time Time of last run displayed.  
Run Duration Last node run amount of time displayed.  
Grid Host Node run grid server displayed.  
User-Added 
Node 

Extension node of SAS Enterprise Miner.  

Property RN Model Selection Methods 
 Allows the selection of specific effects in the regression modeling 

process.  An iterative process Was used in the effort to optimize selected 
criterion among the following options:  

Backward Not recommended when the target is binary, will not be used in the 
study. 

Forward Iteratively adds effects until termination criteria are met.  
Stepwise Similar to Forward, but can also remove items not significantly 

associated with the target variable.  
None Includes all effects in the model.  

Property RN Model Selection Criteria 
 Based on the Entry and/or Stay Significance Levels using the following 

options:  
None Uses the last model produced as the final model. 
Validation Error In logistic regression modeling, the error is the negative log-likelihood.  
Validation 
Misclassification 

Uses model with the lowest misclassification rate.  

Cross-Validation 
Error 

Uses the model with the lowest cross-validation error rate.  For logistic 
regression models, the error is the negative log-likelihood.  

Cross-Validation 
Misclassification 

Uses the model with the lowest cross-validation misclassification rate.  

(continued) 
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Table C4 

Equation Modeling Properties (Continued) 

Property Input Coding Categorical Variables with the RN 
Input Coding Node Used to choose the coding method that Was used with class variables with the 

following options: 
None Does not maintain hierarchy (default).  
Single Hierarchy is used to remove or allow to remain, only one variable per iteration.  
Multiple Hierarchy is used to remove or allow to remain, more than one effect variable per 

iteration.  
Results Window After a successful iteration, this window displays the following: 

• Properties 
o Settings 
o Run Status - displays start time, run duration, and completion status. 
o Variables –Table of the training data variables. 
o Train Code – Training code is displayed. 
o Notes 

• SAS Results 
o Log – Regression run log. 
o Output – Regression run output. 
o Flow Code – Flow diagram code. 

• Scoring 
o SAS Code -  Node score code. 
o PMML Code —Node PMML code 

• Assessment 
o Fit Statistics – In table format. 
o Classification Chart - The Classification chart will display results for 

UARM, the target variable. The horizontal axis Was used to display 
the target levels with colors being used to identify the classification of 
observations.  The percentage of total observations Was represented 
by the height of the bar. 

o Decision Chart – Was used to the percentage of correct classification 
observations to misclassified observations for the training and 
validation iterations. 

o Score Rankings Overlay – The vertical axis will display statistics for 
each observational grouping. Best measures Were represented using 
the model that correctly predicts UARM for all observations. 

o Score Rankings Matrix - Overlays statistics for standard, baseline and 
best models using data from the training and validation sets. Best 
measures Were represented using the model that correctly predicts 
UARM correctly for all cases. 

o Score Distribution – Vertical axis contains nonevents. The horizontal 
axis is the model score of a bin. 

Model Used to display descriptive information about the variables, among the available 
options:  

• Effects Plot – Displays a bar graph of the coefficients. 
• Estimates Selection and Iteration Plots. Displays a graph of statistics of the 

variables used in the modeling. process. 
Table Displays tables of variables applicable to the steps in the modeling process.  
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Table C4 
 
Equation Modeling Properties 

Property Output from Logistic Regression Runs 
Response Profile Displays the order the levels of UARM, using Ordered Values of 1to indicate event 

observations and Ordered Values of 2 to indicate nonevent observations.  
Input Class Level 
Information 

Creates a table listing the values of the design matrix.  

Model Fitting 
Information 

Used to compare models.  

Type III Analysis 
of Effects 

Were used to provide overall tests for the model effects.  

Analysis of 
Maximum 
Likelihood 
Estimates 

Was used to display significance tests of individual model parameters.  

Odds Ratio 
Estimates 

Were used to display odds ratio estimates for each main effect in the model that is not 
involved in an interaction.  

Property Regression Node Output Data Sets 
 The Exported Data Was used to list the two types of data sets that the Regression node 

outputs. 
Scored Data Sets Will contain the scored test, validation, and training data sets inputs and scores. 
Parameter 
Estimates Data Set 

Provides fit statistic information.  
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Table C5 

HP SVM Node Functions  

Node Function 
Node ID Assigns ID codes HPSVM1, HPSVM2, etc.  
Imported 
Data 

Inputs data sources into the HP SVM node with the following options:  
• Browse  
• Explore  
• Properties – Contains Table and Variables tabs.  

Exported 
Data 

Lists output data with the same options as Imported data.  

Notes Allows the storage of notes of interest.  
Variables Allows the selection of menu options including: “Explore” to view 

data sampling information, “use” and “report” for further variable 
functional options in addition to the following:  

• Apply – opens a submenu to allow the following options:  
• Reset  
• Label  
• Mining – Opens a submenu for the following options:  Order, 

Lower Limit, Upper Limit, Creator, Comment, and Format 
Type for each variable.  

• Basic – opens submenu for the following:  Type, Format, 
Informat, and Length of each variable.  

• Statistics – statistics for each variable.  
• Explore – Used to view attributes of a data variable, to include:  

sampling information, observation values, and distribution.  
Maximum 
Iterations 

Selects the maximum number of iterations for optimization.  

Use Missing 
as Level 

Used to select whether missing values are used.  

Tolerance Used to select termination tolerance for optimization.  
Penalty Assigns penalty value.  

(continued) 
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Table C5 

HP SVM Node Functions (Continued) 

Node Function 
Optimization 
Method 

Selects method, either “interior point” or “active set.” 

Interior Point 
Options 

Allows the following submenu options: 
• Kernel – Used to select the desired kernel function, either 

“linear” or “polynomial.”  
• Polynomial Degree – Used to select the degree of the 

polynomial function.  
Active Set 
Options 

Opens a submenu allowing for the following options: 
• Kernel – Linear or polynomial. 
• Polynomial Degree  
• RBF Parameter – Used to select the radial basis function.  

HD SVM 
Node 

The node contains the following properties: 
• Create Time  
• Run ID  
• Last Error 
• Last Status  
• Last Run Time  
• Run Duration  
• Grid Host – Used to display the grid server used in the run.  
• User-Added Node – Used to indicate if extension code was 

created.  
“Results” node Used to open a submenu containing the following options: 

• Properties 
• Settings –  Displays configuration information.  
• Run Status – Displays Start Time, Run Duration, and run 

success information. 
• Variables – Displays variable name, use, report, role, and 

level.  
• Train Code – Displays the training code.  

(continued) 
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Table C5 

HP SVM Node Functions (Continued) 

Node Function 
Notes SAS Results 

• Log  
• Output  
• Flow Code  

SAS Code SAS created Score 
Assessment Used to allow the display of the following information: 

• Fit Statistics  
• Classification Chart – Used only in logistic regression to 

display classification results for the categorical target variable, 
UARM.  

• Score Rankings Overlay – Was used to display all observations 
in descending order of rank, for the binary target variable, 
UARM.  Used to display the following information about 
training and validation statistics as well as “best” measures 
related to correct prediction of the target variable for all 
observations:  

 o Cumulative Lift  
o Lift  
o Gain  
o % Response  
o Cumulative % Response  
o % Captured Response  

(continued) 
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Table C5 

HP SVM Node Functions (Continued) 

Node Function 
Score 
Rankings 
Matrix 

Used to overlay statistics for standard, baseline, and best models as 
defined by and validation data sets and displays the following:  

• Cumulative Lift  
• Lift  
• Gain  
• % Response  
• Cumulative % Response  
• % Captured Response  
• Cumulative % Captured Response 

Score 
Distribution 

Plots the proportion of events to the model score.  Once again, bins 
Were used to group categorical variables.  Choice of chart options 
Were as follows: 

• Percentage of Events  
• Number of Events  
• Cumulative Percentage of Events 
• Report Variables  

Model SVM Fit Statistics  
Model Information  

Table Used to display a table containing pertinent data.  
Plot Used to open a chart selection menu which can be used to customize 

chart display. 
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Table C6 

Recorded Flight Data Variables  

 

Variable Description Unit Scale 
A_T Thrust automatic on  Binary 
AB Airbrake DEG Binary 
ACID Aircraft Number   
ACMS Aircraft Maint System   
AIL_1 Left Aileron Position DEG Cont 
AIL_2 Right Aileron Position DEG Cont 
ALT Pressure Altitude FEET Cont 
ALTR Altitude Rate FT/MIN Cont 
ALTS Selected Altitude FEET Cont 
AOA1 Angle of Attack 1 DEG Cont 
AOA2 Angle of Attack 2 DEG Cont 
AOAC Calibrated AOA DEG Cont 
APFD Flight Director   
ATEN Autothrust Engaged  binary 
BAL1 Baro Correct Altitude LSP feet cont 
BAL2 Baro Correct Altitude LSP feet cont 
BLAC Body Longitudinal Acceleration G cont 
BLV Bleed Air All Valves  binary 
BPGR_1 Brake Pressure LH Green psi cont 
BPGR_2 Brake Pressure RH Green psi cont 
BPYR.1 Brake Pressure LH yellow psi Cont 
BPYR_2 Brake pressure RH Yellow psi cont 
CALT Cabin High Altitude  binary 
CAS Calibrated Airspeed Knots cont 
CASM Max Allowable Airspeed Knots cont 
CASS Selected Airspeed knots cont 
CCPC Control Column Position Captain counts cont 
CCPF Control Column Position FO counts cont 
Variable Description Unit Scale 
CRSS Selected Course deg cont 
CTAC Cross Track Acceleration G cont 
CWPF Control Wheel Position FO counts cont 
CWPC Control Wheel Position Captain counts cont 
DA Drift Angle deg cont 
DATE-DA date-day   
DATE-MO date-month   
DATE-YR date-year   
DFGS DFGS 1 & 2 Master   



239 

 

 

DVER-1 Database Version Char 1   
DVER-2 Database Version Char 2   
DWPT Distance to Waypoint    
EAI engine anti-ice  binary 
ECYC_1 Engine Cycle 1 hours  
ECYC_2 Engine Cycle 2 hours  
ECYC_3 Engine Cycle 3 hours  
ECYC_4 Engine Cycle 4 hours  
EGT_1 engine exhaust gas temperature degrees cont 
EGT_2 engine exhaust gas temperature degrees cont 
EGT_3 engine exhaust gas temperature degrees cont 
EGT_4 engine exhaust gas temperature degrees cont 
EGRS_1 Engine Hours 1   
EGRS_2 Engine Hours 2   
EGRS_3 Engine Hours 3   
EGRS_4 Engine Hours 4   
EVNT Event Marker   
FADF FADEC FAIL All engines  binary 
FADS FADEC Status All engines  binary 
FF_1 fuel flow pounds per hour cont 
FF_2 fuel flow pounds per hour  
FF_3 fuel flow pounds per hour  
FF_4 fuel flow pounds per hour  
Variable Description Unit Scale 
FGC3 DFGS Status 3   
FIRE_1 fire loop 1   
FIRE_2 fire loop 2   
FIRE_3 fire loop 3   
FIRE_4 fire loop 4   
FLAP flap position deg cat 
FPAC flap augmentation computer   
FQTY_1 fuel quantity 1   
FQTY_2 fuel quantity 2   
FQTY_4 fuel quantity 3   
FRMC Frame Counter   
GLS Glideslope Deviation DDM cont 
GMT_HOUR Greenwich Mean Time hours  
GMT_MIN Greenwich Mean Time minutes  
GMT_SEC Greenwich Mean Time seconds  
GPWS ground proximity warning system 1-5  cat 
GS ground speed knots cont 
HDGS Selected Heading deg cont 
HF1 high frequency radio 1   
HF2 high frequency radio 2   
HYDG Low Hydraulic Pressure Green  binary 
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HYDY Low Hydraulic Pressure Yellow  binary 
ILSF ILS Frequency LSP   
IVV Inertial Vertical speed feet per minute cont 
LATG Lateral Acceleration G cont 
LATP Latitude Position LSP   
LGDN Gear Left and Right Down and locked  binary 
LGUP Gear Left and Right Up and Locked  binary 
LMOD Lateral Engage Modes counts  
LOC localizer deviation DDM cont 
LONG Longitudinal Acceleration G cont 
LONP Longitude position LSP deg cont 
Variable Description Unit Scale 
MACH Mach speed  cont 
MH magnetic heading deg cont 
MNS Selected Mach Mach cont 
MRK Markers-Inner, Middle, outer   
MSQT_1 Squat Switch LH main gear  binary 
MSQT_2 Squat Switch RH main gear  binary 
MW Master Warning  binary 
N1C engine speed PRPM cont 
N1CO engine core speed rpm cont 
N1T engine compressor temp deg  
N1_1 fan speed 1 % RPM cont 
Variable Description Unit Scale 
N1_2 fan speed 2 % RPM cont 
N1_3 fan speed 3 % RPM cont 
N1_4 fan speed 4 % RPM cont 
N2_1 core speed 1 % RPM cont 
N2_2 core speed 2 % RPM cont 
N2_3 core speed 3 % RPM cont 
N2_4 core speed 4 % RPM cont 
NSQT Squat Swith nose gear  binary 
OIPL low oil pressure all engines  binary 
OIP_1 oil pressure psi cont 
OIP_2 oil pressure psi cont 
OIP_3 oil pressure psi cont 
OIP_4 oil pressure psi cont 
QIT_1 oil temperature degrees cont 
QIT_2 oil temperature degrees cont 
QIT_3 oil temperature degrees cont 
QIT_4 oil temperature degrees cont 
PACK air conditioning packs all  binary 
PH Flight Phase from ACMS   
PI Impact Pressure LSP mb cont 
Variable Description Unit Scale 
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PLA_1 Power Lever Angle 1 deg cont 
PLA_2 Power Lever Angle 2 deg cont 
PLA_3 Power Lever Angle 3 deg cont 
PLA_4 Power Lever Angle 4 deg cont 
POVT Pylon Overheat all engines  binary 
PS static pressure LSP in. cont 
PSA average static pressure LSP in. cont 
PT total pressure MB cont 
PTCH Pitch angle deg cont 
PTRM pitch trim deg cont 
PUSH stick pusher  binary 
RALT radio altimeter feet cont 
ROLL roll angle deg cont 
RUDD rudder position deg cont 
RUDP rudder pedal position cont cont 
SAT static air temperature deg cont 
SHKR stick shaker  binary 
SMKB animal bay smoke  binary 
SMOK smoke warning  binary 
SNAP manual snapshot switch binary  
SPLG hydraulic system green gallons cont 
SPLY hydraulic system yellow gallons cont 
SPL_1 roll spoiler left deg cont 
SPLY spoiler deploy yellow  binary 
SPLG spoiler deploy green  binary 
SPL_2 roll spoiler right deg cont 
TAI total air temperature degrees cont 
TAS true airspeed knots cont 
TCAS traffic collision avoidance system   
TH true heading   
TMAG true/mag heading select deg cont 
TMODE thrust mode   
Variable Description Unit Scale 
TOCW takeoff configuration warning  binary 
TRK track degrees cont 
TRKM track angle mag LSP deg cont 
VAR_1107 synch word for subframe 1   
VAR_26701 synch word for subframe 2   
VAR_5107 synch word for subframe 3   
VAR_6670 synch word for subframe 4   
VHF1 radio 1   
VHF2 radio 2   
VHF3 radio 3   
VIB_1 engine vibration 1 in./sec cont 
VIB_2 engine vibration 2 in./sec cont 
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VIB_3 engine vibration 3 in./sec cont 
VIB_3 engine vibration 4 in./sec cont 
VMODE vertical engage modes   
VRTG vertical acceleration G cont 
VSPS selected vertical speed ft/min cont 
WAI_1 inner wing deice  binary 
WAI_2 outer wing deice  binary 
WOW weight on wheels  binary 
WSHR windshear  binary 
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Table C7 

Random Forest  

 

Property Function 
Node ID Was used to indicate the ID of the node in the diagram.  For 

example, HPDMForest2, HPDMForest3, etc.  
Imported Data Used to display the following importing options:  

• Browse – Was used to browse the data.  
• Explore – Was used to sample and plot the data.  
• Properties – Was used to open the Table and Variables 

options.  
Exported Data Was used to open the same submenu options as the “input” menu:  

• Browse - Was used to browse the data. 
• Explore - Was used to sample and plot the data 
• Properties - Was used to open the Table and Variables 

options. 
 Train properties are also available as follows: 

Variables Was used to open a variables table, which will then be used to view 
an “Explore” option to observe sampling information, values, or a 
distribution plot of the variable of interest.  

Maximum Number of Trees Was used to select the number of DT models in a forest. specifies the 
number of trees in the forest.  

Seed Was used to select a random number generator for sampling.  

Type of Sample Was used to select the number of observations in the training 
sample.  

Proportion of Obs in Each Sample When Type of Sample is selected to Proportions, Was used to select 
percentage of observations for each tree in the forest.  

Number of Obs in Each Sample Was used to select the number of observations in each tree when 
Count is used to select Type of Sample. 

 The following splitting options are available in the HP Forest Node 
Train Properties menu:  

Maximum Depth Was used to select the maximum depth of a tree node.  

Missing Values Was used to select how missing values are treated.  Options include: 
“Use in Search” Was use missing values as a separate value for 
splitting.  “Distribute” Was used to omit missing values in the 
splitting of a particular node.   

(continued)  
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Table C7 

Random Forest (Continued) 

Property Function 

Minimum Use in Search Was used to select the minimum number of missing value observations 
Was used in a splitting rule. 

Number of Variables to Consider 
in Split Search 

Was used to select the number of input variables in a particular node.  

Significance Level Was used to select a p-value to test association of an input variable with 
the target variable, UARM.  

Max Categories in Split Search Was used to select the maximum number of categories in a candidate 
variable in an association test. 

Minimum Category Size Was used to select the minimum number of input variables that a given 
nominal category will use in a split search.  

Exhaustive Used to select the maximum number of splits when a target variable 
contains more than two categories.  

Method for Leaf Size Was used to select the value of the leaf size.  Options include “default”, 
“count”, and “proportion.”  

Smallest Percentage of Obs in 
Node 

Was used to select the smallest number of training observations a new 
branch can have.  

Smallest Number of Obs in Node Was used to select the smallest number of training observations a new 
branch can have. 

Split Size Was used to select the number of observations within a node prior to 
splitting. The HP Forest node contains the following score properties: 

Variable Selection Was used to select the automatic selection function of the node. 

Variable Importance Method Was used to select which option Was used regarding variable importance 
among the following options: Loss Reduction (default) or Random 
Branch Assignments.  

Number of Variables to Consider Was used when “Random Branch Assignments” in the “Number of 
Variables to Consider” setting is used.  

Cutoff Fraction Was used with when the “Variable Importance Method” property is set to 
“Random Branch Assignments” to select the threshold setting for largest 
random branch assignment measure. 

(continued) 
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Table C7 

Random Forest (Continued) 

Property Function 

“Results” Options 
Settings Was used to display HP Forest node properties.  

Run Status Was used to display run start time, duration, and status.  

Variables Was used to present a table of variables in the training data set.  

Train Code Was used to present the training code.  

Notes Was used to present data information.  

SAS Results 

Log Displays the HP Forest run log.   

Output Was used to display the HP Forest run output.  

Flow Code Was used to display the HP Forest node flow code.  

Scoring 

SAS Code Was used to present the HP Forest SAS code.  

Assessment 

Fit Statistics Was used to present model fit statistics.  

Classification Chart Was used to present classification results for the categorical target 
variable, UARM.    

Score Rankings Overlay Was used to present statistics for groups of observations, sorted by the 
posterior probabilities.  Was used to present both training and validation 
statistics.    

Score Distribution Was used to plot nonevents and proportions of events and the model score 
of a bin.   

Model Was used to present tables and graphs pertaining to the variables as 
follows: 

Baseline Fit Statistics Was used to present information about the baseline model.  

Iteration History Was used to present information about the iterative modeling process.  

Iteration Plot Was used to present goodness-of-fit statistics plotted against the number 
of trees in the forest.  

(continued)  
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Table C7 

Random Forest (Continued) 

Property Function 

Leaf Plot Was used to present the total number of leaves in the forest plotted against 
the number of trees in the forest.  See Figure 20. 

Leaf Statistics Was used to leave distribution in the form of a histogram.  

Variable Importance Was used to present information pertaining to each variable’s worth.  

Table Was used to present data used to construct charts.  

Plot Was used to modify or create charts. 
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